首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Polyaniline (PANI) and Titanium dioxide (TiO2)/PANI composite thin film based chemiresistor type gas sensors for hydrogen (H2) gas sensing application are presented in this paper. Pure PANI and TiO2/PANI composites with different wt% of TiO2 were synthesized by chemical oxidative polymerization of aniline using ammonium persulfate in acidic medium at 0-5 °C. Thin films of PANI and TiO2/PANI composites were deposited on copper (Cu) interdigited electrodes (IDE) by spin coating method to prepare the chemiresistor sensor. Finally, the response of these chemiresistor sensors for H2 gas was evaluated by monitoring the change in electrical resistance at room temperature. It was observed that the TiO2/PANI composite thin film based chemiresistor sensors show a higher response as compared to pure PANI sensor. The structural and optical properties of these composite films have been characterized by X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopy respectively. Morphological and structural properties of these composites have also been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively.  相似文献   

2.
In this study, porous polyaniline tube-like/TiO2 nano-heterostructure (PPTH) was prepared by a chemical oxidative polymerization to be used in H2 sensing. The surface morphology of polyaniline, the content of one-dimensional TiO2 nanostructures (1D TiO2), and the porosity of PPTH significantly affected the sensing performance of the samples. The response and response/recovery time of gas sensing for H2 were considered by morphological change of TiO2 at ambient conditions. The p-n contacts between polyaniline matrix and 1D TiO2 provided more active sites and facilitated the electrons transport, hence promoting the physisorption of gas molecules. R20 exhibited the highest sensitivity of 9.05 towards 2500 ppm of H2 gas at the respective response and recovery times of 94 and 374 s. The sensor designed based on F30 exhibited proper long-term stability after one year. The sensing mechanism of PPTH was also studied in detail.  相似文献   

3.
Photoactive membranes coated with TiO2 and Pt/TiO2 nanostructured thin films were produced by one-step deposition of gas phase nanoparticles on glass fiber filters. Pt/TiO2 nanoparticles (0–1.5 wt.% Pt content) were produced by flame spray pyrolysis, starting from liquid solutions of the Ti and Pt precursors, and then expanded in a supersonic beam to be deposited on the filters. The nanostructured coatings were composed of crystalline nanoparticles (mainly anatase phase), without any need of post-deposition annealing. The so obtained photocatalytic membranes were tested in hydrogen production by photo-steam reforming of ethanol in an expressly set-up diffusive photoreactor. The reaction rate was found to increase with increasing the Pt content in the photoactive material, up to 1.5 wt.% Pt. The use of these membranes allowed a significant increase of the hydrogen production rate compared to that obtained with the same photoactive Pt/TiO2 films deposited on a quartz substrate.  相似文献   

4.
In the present work we have reported the effect of Shift heavy ion (SHI) irradiation on the gas sensing properties of tantalum (Ta)/Polyaniline (PANI) composite thin film based chemiresistor type gas sensor for hydrogen gas sensing application. PANI was synthesized chemically by in situ oxidative polymerization method. The thin sensing films of PANI were deposited onto finger type Cu-interdigited electrodes using spin cast technique and a thin Ta layer was deposited on to PANI thin film to prepare Ta/PANI composite chemiresistor sensor. These chemiresistor sensing films were irradiated with energetic Au+12 ions (150 MeV) at the different fluencies ranging from 1 × 109 to 1 × 1011 ions/cm2. The structural and morphological properties of these composite thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements before and after SHI irradiation. The electrical properties of these composite thin films were characterized by I–V characteristic measurements. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that after SHI irradiation Ta/PANI composite sensor shows a high response value and sensitivity with good repeatability in comparison to the pristine sample.  相似文献   

5.
Hydrogen sensors have been fabricated from highly ordered TiO2 nanotube arrays through anodization of a Ti substrate in an ethylene glycol solution containing NH4F. The vertically oriented TiO2 nanotube arrays containing Pt electrodes exhibit an ability to detect a wide-range of hydrogen concentrations at room temperature. On exposure to 2000 ppm (parts per million) hydrogen, the sensors exhibit seven orders of magnitude change in resistance with a response time of 13 s at room temperature. The TiO2 nanotube arrays sensor equipped with Pt electrodes exhibited a diode-type current–voltage (I–V) characteristic in air, but nearly ohmic behavior in hydrogen balanced with argon. A significant response to hydrogen was observed without the presence of oxygen in the base atmosphere. The response of two kinds of sensors with either Pt or Pt/Ti electrodes to 500 ppm hydrogen was measured and the results suggested that the excellent hydrogen sensing properties in air resulted primarily from the variation of the Schottky barrier height at the Pt/TiO2 interface.  相似文献   

6.
Though less frequently studied for solar-hydrogen production, films are more convenient to use than powders and can be easily recycled. Anatase TiO2 films decorated with Ag nanoparticles are synthesized by a rapid, simple, and inexpensive method. They are used to cleave water to produce H2 under UV light in the presence of methanol as a hole scavenger. A simple and sensitive method is established here to monitor the time course of hydrogen production for ultralow amounts of TiO2. The average hydrogen production rate of Ag/TiO2 anatase films is 147.9 ± 35.5 μmol/h/g. Without silver, it decreases dramatically to 4.65 ± 0.39 μmol/h/g for anatase TiO2 films and to 0.46 ± 0.66 μmol/h/g for amorphous TiO2 films fabricated at room temperature. Our method can be used as a high through-put screening process in search of high efficiency heterogeneous photocatalysts for solar-hydrogen production from water-splitting.  相似文献   

7.
Photocatalytic TiO2 thin films were prepared via an electron beam-induced deposition (EBID) method. The effects of post-calcination treatment on the properties of the prepared TiO2 thin films were studied. X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometry (SEM-EDS), and UV–V is absorption spectrometry were performed to reveal the crystallinity, surface morphology, chemical composition, and light absorbance of the prepared TiO2 thin films. The photoelectrochemical characteristics of the TiO2 thin films were investigated with a potentiostat. Under UV irradiation, a photocurrent of ˜2.1 mA was observed for the TiO2 thin film with post-calcination at 500 °C. A water-splitting reaction was conducted over the TiO2 thin film with the best photoelectrochemical performance. The yields of hydrogen and oxygen were 59.8 and 30.6 μmole, respectively, after 8 h of reaction under UV irradiation.  相似文献   

8.
Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time (less than 20 s) at 500 ppm of hydrogen were observed for the sample with low concentration of Pd (2 wt.%) decorated on the TiO2/RGO sample at a relatively low temperature (180 °C). The RGO sheets, by playing scaffold role in these hybrid structures, provide new pathways for gas diffusion and preferential channels for electrical current. Based on the proposed mechanisms, Pd/TiO2/RGO sample indicated better sensing performance compared to the Pt/TiO2/RGO. Greater rate of spill-over effect and dissociation of hydrogen molecules on Pd are considered as possible causes of the enhanced sensitivity in Pd/TiO2/RGO.  相似文献   

9.
In this study, NiO and WO3 oxide semiconductors were fabricated on glass substrates by RF Magnetron Sputtering technique. Structural and optical characterizations of the semiconductors were performed using XRD, SEM, and optical absorption measurements. NiO and WO3 thin films were occasionally coated with palladium. In order to investigate the optical response of these semiconductors under hydrogen gas exposure, an optical gas sensor test system was installed and programmed. In both of the coated and uncoated cases, optical absorption changes due to hydrogen gas exposure on the surface were investigated. It was observed that these changes occur between 450 and 850 nm wave lengths range. The absorption in the NiO semiconductor was reduced between these wave lengths, while the absorption was increased in the WO3 semiconductor. In the uncoated state, only NiO gave an optical response to hydrogen gas. While the palladium coated NiO (Pd/NiO) sensor had the best response and recovery times of respectively 70 s and 206 s for 2% fraction of H2 gas at 300 °C constant temperature, the Pd/WO3 sensor gave the best response time of 340 s. Palladium coating resulted in approximately 150% increase in the responses of the NiO sensors at higher H2 concentration. The lower limit of H2 sensing of the Pd/NiO sensors at 300 °C was at the H2 fraction of 0.05%, while for Pd/WO3 sensors this value was 0.025%.  相似文献   

10.
In this report, non-aggregated anatase TiO2 nanoparticles were synthesized by mild solvothermal process in 1-butanol. By varying solvothermal reaction temperature and time, TiO2 particle size was controlled from 5.3 to 9.0 nm, while maintaining pure anatase phase and optical clearance in the concentrated dispersion (5 wt%). Spin coating of TiO2 dispersions resulted in transparent thin films with thickness controllability, and it was confirmed that the mild solvothermal reaction significantly increased the refractive index of the thin films without post-thermal treatment. In addition to the fabrication of low-temperature processed thin films, the inverse opal TiO2 films were also fabricated by the colloidal templating method followed by thermal calcination to reveal the improved volume shrinkage of the mesoporous TiO2 films.  相似文献   

11.
Low-temperature (180–240 °C) synthesis of nanocrystalline titanium dioxide (TiO2) by surfactant-free solvothermal route is investigated. Titanium iso-propoxide is used as the precursor and toluene as the solvent. Different precursors to solvent weight ratios have been used for the synthesis of TiO2 nanoparticles. For the weight ratios 15/100, 25/100 and 35/100 the X-ray diffractograms show the formation of nanocrystalline TiO2. The X-ray diffraction and transmission electron microscopy studies shows that the product has anatase crystal structure (for temperatures <200 °C) with average particle size below 15 nm. The films deposited by spray deposition method using these nanoparticles show the crystalline and porous nature of the films. The present method of deposition also avoids the post-treatment (sintering) of the films. The nanoparticles thus prepared and the films can be used for gas sensing and biological applications and also as photo-electrodes for dye-sensitized solar cells.  相似文献   

12.
Pd–WO3 nanostructures were incorporated on graphene oxide (GO) and partially reduced graphene oxide (PRGO) sheets using a controlled hydrothermal process to fabricate effective hydrogen gas sensors. Pd–WO3 nanostructures showed ribbon-like morphologies and Pd–WO3/GO presented an irregular nanostructured form, while Pd–WO3/PRGO exhibited a hierarchical nanostructure with a high surface area. Gas sensing properties of thin films of these materials were studied for different hydrogen concentrations (from 20 to 10,000 ppm) at various temperatures (from room temperature to 250 °C). Although adding GO in the Pd–WO3, after hydrothermal process could increase the film conductivity, gas sensitivity was reduced to half, due to lower surface area of the irregular morphology in comparison with the ribbon-like morphology. The Pd–WO3/PRGO films showed an optimum sensitivity (∼10 folds better than the sensitivity of Pd–WO3/GO), and a fast response and recovery time (<1 min) at low temperature of 100 °C. Moreover, the Pd–WO3/PRGO-based gas sensor was sensitive to 20 ppm concentration of hydrogen gas at room temperature. The results confirmed the effect of residual oxygen-containing functional groups of PRGO on the growth and morphology of Pd–WO3 as well as gas sensing properties of metal oxide/graphene based hybrid nanostructures.  相似文献   

13.
A comparative study of Schottky diode hydrogen gas sensors based on Pd/WO3/Si and Pd/WO3/ZnO/Si structure is presented in this work. Atomic force microscopy and X-ray photoelectron spectroscopy reveal that the WO3 sensing layer grown on ZnO has a rougher surface and better stoichiometric composition than the one grown on the Si substrate. Analysis of the IV characteristics and dynamic response of the two sensors when exposed to different hydrogen concentrations and various temperatures indicate that with the addition of the ZnO layer, the diode can exhibit a larger voltage shift of 4.0 V, 10 times higher sensitivity, and shorter response and recovery times (105 s and 25 s, respectively) towards 10,000-ppm H2/air at 423 K. Study on the energy band diagram of the diode suggests that the barrier height is modulated by the WO3/ZnO heterojunction, which could be verified by the symmetrical sensing properties of the Pd/WO3/ZnO/Si gas sensor with respect to applied voltage.  相似文献   

14.
With the increasing usage of hydrogen energy, the requirements for hydrogen detection technology is increasingly crucial. In addition to bringing down the working temperature, further improvement in the response and broadening the detection range of hydrogen sensors in particular are still needed. TiO2 based sensors show great promise due to their stable physical and chemical properties as well as low cost and easy fabrication, but their detection range and low concentration response requires further improvement for practical applications. Here (002) oriented rutile TiO2 thin films are prepared by a hydrothermal method followed by annealing in either air, oxygen, vacuum or H2 and the hydrogen sensing performance are evaluated. Raman results show that TiO2 thin films annealed in vacuum and hydrogen have more oxygen vacancies, while those annealed in air and oxygen have a more stoichiometric surface. Annealing in an oxygen-rich atmosphere is shown to extend the detection range of the TiO2 sensors while annealing in anaerobic atmospheres increases their response. At high hydrogen concentrations surface adsorbed O2 is the dominant factor, while at low concentrations the Schottky barrier between Pt and TiO2 is key to achieving a high response. Here we show controlling the TiO2 surface properties is essential for optimizing hydrogen detection over specific concentration ranges. We demonstrate that adjusting the annealing conditions and ambient provides a simple method for tuning the performance of room temperature operating TiO2 based hydrogen sensors.  相似文献   

15.
A novel method for fabrication of a thermochemical hydrogen (TCH) gas sensor composed of platinum (Pt)-decorated graphene sheets and a thermoelectric (TE) polymer nanocomposite was investigated. The hydrogen sensing characterization for the device included gas response, response time (T90), recovery time (D10), and reliability testing, which were systematically conducted at room temperature with a relative humidity of 55%. Here, the Pt-decorated graphene sheets act as both an effective hydrogen oxidation surface and a heat-transfer TE polymer nanocomposite having low thermal conductivity. This property plays an important role in generating output voltage signal with a temperature difference between the top and bottom surfaces of the nanocomposite. As a result, our TCH gas sensor can detect the range of hydrogen from 100 ppm to percentage level with good linearity. The best response and recovery time revealed for the optimized TCH gas sensor were 23 s and 17 s under 1000 ppm H2/air, respectively. This type of sensor can provide an important component for fabricating thermoelectric-based gas sensors with favorable gas sensing performance.  相似文献   

16.
Metal oxide semiconductor gas sensors of hydrogen with a typical capacitor-like Pt/TiO2/Pt electrode arrangement exhibit excellent sensitivity to hydrogen even at room temperature. At the same time, very similar Pt/TiO2/Pt cells can also be used as memristive elements exhibiting resistive switching between two resistive states, which has been recently exploited to create a gas sensor with built-in memory. Merging of these two functionalities within a single device also opens new possibilities for smart gas sensor arrays. However, so far such sensors have been prepared only on rigid substrates. In this work, a flexible hydrogen gas sensor with such capacitor-like Pt/TiO2/Pt electrode arrangement fabricated on polyimide foil is presented and characterized in terms of hydrogen gas sensing properties and bending endurance. The sensor exhibits high response (Rair/RH2) of more than 105 to 10 000 ppm H2 at 150 °C with minor decline at elevated humidity and is capable of room temperature operation. The lowest detected concentration was 3 ppm at 150 °C and 300 ppm at room temperature in dry conditions. Bending the sensor 105 times over diameter of 10 mm led to slight improvement of the sensing performance.  相似文献   

17.
The visible light-active nitrogen-doped TiO2 has been prepared by dc-reactive magnetron sputtering using Ti target in an Ar+O2/N gas mixture. The preparation of highly crystallized anatase TiOxNy thin films with various nitrogen concentrations allowed us to identify the optimum nitrogen flow ratio for the photocatalytic oxidation (PCO) of 2-propanol. At higher nitrogen flow rate, nitrogen is found to be difficult to substitute for oxygen having been predicted to contribute the band gap narrowing, giving rise to undesired deep level defects. In addition, Raman spectroscopy and X-ray diffraction (XRD) studies revealed that highly crystallized anatase growth of nitrogen-doped TiOxNy thin films are difficult at higher nitrogen flow rate. The optical band gap was found to be lower for the films deposited at 2 sccm of nitrogen flow rate. The PCO of 2-propanol was studied as a function of nitrogen flow rate using in situ FTIR spectroscopy. The PCO of 2-propanol found to proceed along two routes: one was through the chemisorbed species, 2-propoxide to form the CO2 directly; the other was through conversion of 2-propanol to acetone, followed by formation of formate species, and finally CO2.  相似文献   

18.
Hydrogen sensors with fast response and recovery rate based on nanoporous palladium (Pd) and titanium dioxide (TiO2) composite films supported by anodic aluminum oxide (AAO) template have been demonstrated. Nanoporous TiO2 film was sprayed on the porous AAO templates, followed by Pd film deposited on TiO2 layer by DC magnetron sputtering. We have researched the detection performance of the hydrogen sensors depending on different thickness of TiO2 layer from 6 to 30 nm with keeping the thickness of Pd as 30 nm. The results have demonstrated the sensors with 10 nm thickness of TiO2 achieve the best performance with a response/recovery time as short as 4/8s at 0.8% and 0.4% hydrogen concentration, respectively. The sensors exhibited very good performance under hydrogen concentrations from 0.4% to 1.8%.  相似文献   

19.
WO3 loaded with noble metals is well-known to be sensitive to reducing gases and can be used as hydrogen sensor. This paper presents a simple and attractive method concerning the preparation of hydrogen sensors based on Pd-loaded WO3 nanocomposites with different morphologies. The influences of the morphology of WO3 and the palladium growth on its surface on the hydrogen sensing performances are studied. WO3 nanospheres, nanowires and nanolamellae were synthesized by different methods starting from the same precursor (H2WO4·nH2O) which has been obtained by acidification of sodium tungstate (Na2WO4). The prepared WO3 nanostructures were modified with the Pd by dispersing them in a PdCl2 containing solvent using sonication (giving Pd-WO3 inks). The sensors were prepared by screen-printing thick films (∼10 μm) of these inks on alumina substrates fitted with gold electrodes. The response of Pd-loaded WO3 sensors to hydrogen was checked for the different morphologies at working temperatures ranging from 180 to 240 °C. The sensors prepared from nanolamellae showed the highest response while the nanowires presented the shortest response time to hydrogen.  相似文献   

20.
The plasma spray technique was well proven in producing metal oxide based gas sensors in the last two decades using different powder feedstocks. However, limited research was made to fabricate hydrogen gas sensor from tin oxide layer coated over tungsten oxide layer. This paper attempts to interpret the hydrogen gas sensing performances of plasma sprayed coating derived by depositing tin oxide layer over tungsten oxide (SnO2/WO3) layer. Plasma sprayed SnO2/WO3 sensor showed maximum response of 90% at 150 °C in contrast to stand-alone WO3 (89% at 350 °C) and stand-alone SnO2 (89% at 250 °C). The lower operating temperature of SnO2/WO3 sensor without compromising gas response was attributed to the WO3–SnO2 hetero-junction. SnO2/WO3 sensor showed selective sensing towards hydrogen with respect to carbon monoxide and methane gases. This sensor also possessed repeatable characteristics after 39 days from the initial measurement. In a nut-shell, plasma spayed SnO2/WO3 sensor showed stability of base resistance, repeatability after successive response and recovery cycles, selective sensing towards 500 ppm H2 with significant magnitude of gas response of 90%, response time of 35 s and recovery time of 269 s at a temperature of 150 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号