首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Metal‐organic frameworks consisting of amino‐modified MIL‐101(M: Cr, Al, and Fe) crystals have been synthesized and subsequently incorporated to glycidyl methacrylate monoliths to develop novel stationary phases for nano‐liquid chromatography. Two incorporation approaches of these materials in monoliths were explored. The metal‐organic framework materials were firstly attached to the pore surface through reaction of epoxy groups present in the parent glycidyl methacrylate‐based monolith. Alternatively, NH2‐MIL‐101(M) were admixed in the polymerization mixture. Using short time UV‐initiated polymerization, monolithic beds with homogenously dispersed metal‐organic frameworks were obtained. The chromatographic performance of embedded UV‐initiated composites was demonstrated with separations of polycyclic aromatic hydrocarbons and non‐steroidal anti‐inflammatory drugs as test solutes. In particular, the incorporation of the NH2‐MIL‐101(Al) into the organic polymer monoliths led to an increase in the retention of all the analytes compared to the parent monolith. The hybrid monolithic columns also exhibited satisfactory run‐to‐run and column‐to‐column reproducibility.  相似文献   

2.
We report on a facile method to stabilize colloidal self‐assembled (CSA) nanoparticles packed in microchannels for high speed size‐based separation of proteins. Silica nanoparticles, self‐assembled in a network of microfluidic channels, were stabilized with a methacrylate polymer prepared in situ through photopolymerization. The entrapment conditions were investigated to minimize the effect of the polymer matrix on the structure of the packing and the separation properties of the CSA beds. SEM shows that the methacrylate matrix links the nanoparticles at specific sphere–sphere contact points, improving the stability of the CSA structure at high electric fields (up to at least 1800 V/cm), allowing fast and efficient separation. The %RSD of the protein migration times varied between 0.3 and 0.5% (n = 4, in 1 day) and <0.83% over a period of 7 days (n = 28 runs) in a single device, at high field strength. The overall %RSD of protein migration times from chip‐to‐chip across a single fabrication run was 4.3% (n = 3) and between fabrication runs was 11% (n = 35), with 87% fabrication yield, demonstrating reproducible packing and entrapment behavior. The optimized entrapped CSA beds demonstrated better separation performance (plate height, H ~ 200 nm) than similarly prepared on‐chip CSA beds without the polymer entrapment. Polymer‐entrapped CSA beds also exhibited superior protein resolving power: the minimum resolvable molecular weight difference of proteins in the polymer‐entrapped CSA bed is 0.6 kDa versus ~9 kDa for the native silica CSA bed (i.e. without polymer entrapment).  相似文献   

3.
Both the separation behavior and the structure of a polymer monolith column depends on both the reaction solution composition and the polymerization conditions. In photoinitiated low‐temperature polymerization, polymerization temperature, irradiation intensity, and polymerization time were key factors to control the monolith characteristics. In this study, the effect of polymerization time on the chromatographic, material, and chemical characteristics of poly(butyl methacrylate‐co‐ethylene dimethacrylate) monoliths was studied using pyrolysis‐gas chromatography, Raman spectroscopy, inverse size exclusion chromatography, scanning electron microscopy, and chromatographic methods. Both butyl methacrylate and ethylene dimethacrylate monomers were incorporated into the monolith as the polymerization time increased, and it resulted in increases in both the flow resistance (decrease in both permeability and total/through pore porosities) and retention factors. The longer polymerization time led to lower relative amounts of free methacrylate functional groups in the monolith, i.e. cross‐linking was enhanced. The increase of the polymerization time from 8 to 12 min significantly reduced the separation efficiency for the retained analyte, whereas an increase in the fraction of the mesoporosity was observed.  相似文献   

4.
A novel polymethacrylate‐based monolithic column with covalently bonded zwitterionic functional groups was prepared by in situ copolymerization of N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (SPE), pentaerythritol triacrylate (PETA), and vinylsulfonic acid (VS) in a binary porogenic solvent consisting of cyclohexanol and ethylene glycol. This monolith was developed as a separation column for CEC. While SPE functioned as both an electrostatic interaction stationary phase and the polar ligand provider, VS was employed to generate EOF. PETA, which has much more hydrophilicity due to a hydroxyl sub‐layer, was used to replace ethylene dimethacrylate as a cross‐linker. The monolith provided an adequate EOF when VS level was maintained at 0.6% w/w. Different monolithic stationary phases were easily prepared by adjusting the ratio of PETA/SPE in the polymerization solution as well as the composition of the porogenic solvent. The observed RSD were ≤3.6, ≤4.3 and ≤5.6% for the EOF velocity, retention time, and column efficiency, respectively. The column efficiencies greater than 145 000 theoretical plates/m for thiourea and 132 000 theoretical plates/m for charged cytidine were obtained. The poly(SPE‐co‐PETA‐co‐VS) monolith showed good selectivity for neutral and charged polar analytes. It was found that the separation mechanism of charged polar solutes was attributed to a mixed mode of hydrophilic interaction and electrostatic interaction, as well as electrophoresis. No peak tailing was observed for the separation of basic compounds, such as basic nucleic acid bases and nucleoside on the monolith.  相似文献   

5.
A novel o‐phenanthroline‐immobilized ionic‐liquid‐modified hybrid monolith for capillary electrochromatography was synthesized based on chloropropyl‐silica, which was prepared by the in situ polymerization of tetramethoxysilane and 3‐chloropropyltrimethoxysilane via a sol–gel process. The morphology of the hybrid monolith was characterized by scanning electron microscopy, and relatively stable anodic electroosmotic flow was observed under a broad pH ranged from pH 3.0 to 9.0. The separation mechanism was investigated by separating four neutral molecules (toluene, dimethylformamide, formamide, and thiourea). The obtained hybrid monolith possessed an obviously reversed‐phase retention mechanism, but when the acetonitrile content in the mobile phase was >90% v/v, a weak hydrophilic mechanism was observed on the resultant o‐phenanthroline‐modified chloropropyl‐silica hybrid monolith. The reproducibility of the column was also investigated by measuring relative standard deviations of the migration time for four neutral molecules. Relative standard deviations of run to run (n = 3), day to day (n = 3), and column to column (n = 3) were in the range of 0.4–0.7, 0.9–2.1, and 1.4–3.3%, respectively. Basic separations of various polar analytes including phenols and aromatic amines were successfully achieved.  相似文献   

6.
Pepsin‐modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)‐nefopam. Furthermore, the electrochromatographic performance of the pepsin‐functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday <0.53, n = 10; interday <0.53, n = 10; column‐to‐column <0.70, n = 20; and batch‐to‐batch <0.80, n = 20) indicated satisfactory stability of these columns. No appreciable change was observed in retention and resolution for chiral recognition of (±)‐nefopam in 50 days with 100 injections. The proteolytic activity of this stationary phase was further characterized with bovine serum albumin as substrate for online protein digestion. As for monolithic immobilized enzyme reactor, successive protein injections confirmed both the operational stability and ability to reuse the bioreactor for at least 20 digestions. It implied that the affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme‐modified affinity capillary monolith for enantioseparation.  相似文献   

7.
Graphene oxide (GO) nanosheets were incorporated into an organic polymer monolith containing 3‐acrylamidophenylboronic acid (AAPBA) and pentaerythritol triacrylate (PETA) to form a novel monolithic stationary phase for CEC. The effects of the mass ratio of AAPBA/PETA, the amount of GO, and the volume of porogen on the morphology, permeability and pore properties of the prepared poly(AAPBA‐GO‐PETA) monoliths were investigated. A series of test compounds including amides, alkylbenzenes, polycyclic aromatics, phenols, and anilines were used to evaluate and compare the separation performances of the poly(AAPBA‐GO‐PETA) and the parent poly(AAPBA‐co‐PETA) monoliths. The results indicated that incorporation of GO into monolithic column exhibited much higher resolutions (>1.5) and column efficiency (62 000 ~ 110 000 plates/m for toluene, DMF, formamide, and thiourea) than the poly(AAPBA‐co‐PETA). The successful application in isocratic separation of peptides suggests the potential of the GO incorporated monolithic column in complex sample analysis. In addition, the reproducibility and stability of the prepared poly(AAPBA‐GO‐PETA) monolith was assessed. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of this monolith for alkylbenzenes’ retention were satisfactory with the RSDs less than 1.8% (n = 5), 3.7% and 5.6% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method.  相似文献   

8.
A stationary phase was prepared by chemical derivatization of the support particles with a layer of copolymer composed of styrene and N‐phenyl acrylamide. Silica monolith particles of ca. 2.6 µm (volume‐based average) have been prepared as the support particles by sol‐gel reaction followed by differential sedimentation. The particles were reacted with 3‐chloropropyl trimethoxysilane followed by sodium diethyldithiocarbamate to introduce an initiator moiety. Then, the copolymer layer was immobilized via reversible addition‐fragmentation transfer polymerization. The resultant phase was packed in glass‐lined stainless‐steel micro‐columns (1 x 150 mm) and evaluated for the separation of a mixture composed of five peptides (Trp‐Gly, Thr‐Tyr‐Ser, angiotensin I, isotocin and bradykinin). The effect of monomer mixing ratio (styrene versus N‐phenyl acrylamide) on the chromatographic separation efficiency of the stationary phase was examined. A number of theoretical plates (N) as high as 33 600 plates/column (224 000 plates/m, 4.46 µm plate height) was achieved using the column packed with the optimized stationary phase. The column‐to‐column reproducibility based on three columns packed with three different batches of stationary phase was found satisfactory in separation efficiency, retention factor, and asymmetry factor.  相似文献   

9.
The novel enantiomeric separation of acidic and neutral compounds by capillary electrochromatography with β‐cyclodextrin‐bonded positively charged polyacrylamide gels was examined. The columns used are capillaries filled with a positively charged polyacrylamide gel, a so‐called monolithic stationary phase, to which allyl carbamoylated β‐CD derivatives covalently bind. The capillary wall was activated first by bifunctional reagent to make the resulting gel bind covalently inside the fused‐silica tubing. Enantiomeric separations of sixteen acidic and two neutral compounds were achieved using the above‐mentioned columns and 200 mmol dm–3 Tris–300 mmol dm–3 boric acid buffer (pH 8.1) as a mobile phase. High efficiencies of up to 150 000 plates m–1 were obtained for dansyl‐DL‐amino acids. The within‐run and between‐run reproducibilities of retention time and separation factor were examined for three dansyl‐DL‐amino acids and warfarin. The relative standard deviations of the within‐run and between‐run reproducibilities of retention time were less than 1.2 and 1.3% over the six injections, respectively. Those of the separation factor were less than 0.3 and 0.2%, respectively. The gel‐filled capillaries were stable for at least four months with intermittent use.  相似文献   

10.
Inverse opal monolithic flow‐through structures of conducting polymer (CP) were achieved in microfluidic channels for lab‐on‐a‐chip (LOC) applications. In order to achieve the uniformly porous monolith, polystyrene (PS) colloidal crystal (CC) templates were fabricated in microfluidic channels. Consequently, an inverse opal polyaniline (PANI) structure was achieved on‐chip, through a two‐step process involving the electrochemical growth of PANI and subsequent removal of the template. In this work the effect of CP electropolymerisation time on these structures is discussed. It was found that growth time is critical in achieving an ordered structure with well‐defined flow‐through pores. This is significant as these optimised porous structures will allow for maximising the surface area of the monolith and will also result in well‐defined flow profiles through the microchannel.  相似文献   

11.
Bis‐styrenic molecules, 1,4‐divinylbenzene (DVB) and 1,2‐bis(4‐vinylphenyl)ethane (BVPE), were successfully combined with hydrogen (H2) to form consecutive chain transfer complexes in propylene polymerization mediated by an isospecific metallocene catalyst (i.e., rac‐dimethylsilylbis(2‐methyl‐4‐phenylindenyl)zirconium dichloride, I ) activated with methylaluminoxane (MAO), rendering a catalytic access to styryl‐capped isotactic polypropylenes (i‐PP). The chain transfer reaction took place in a unique way where prior to the ultimate chain transfer DVB/H2 or BVPE/H2 caused a copolymerization‐like reaction leading to the formation of main chain benzene rings. A preemptive polymer chain reinsertion was deduced after the consecutive actions of DVB/H2 or BVPE/H2, which gave the styryl‐terminated polymer chain alongside a metal‐hydride active species. It was confirmed that the chain reinsertion occurred in a regio‐irregular 1,2‐fashion, which contrasted with a normal 2,1‐insertion of styrene monomer and ensured subsequent continuous propylene insertions, directing the polymerization to repeated DVB or BVPE incorporations inside polymer chain. Only as a competitive reaction, the insertion of propylene into metal‐hydride site broke the chain propagation resumption process while completed the chain transfer process by releasing the styryl‐terminated polymer chain. BVPE was found with much higher chain transfer efficiency than DVB, which was attributed to its non‐conjugated structure with much divided styrene moieties resulting in higher polymerization reactivity but lower chain reinsertion tendency. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3709–3713, 2010  相似文献   

12.
This study discusses the design aspects for the construction of a microfluidic device for comprehensive spatial two‐dimensional liquid chromatography. In spatial two‐dimensional liquid chromatography each peak is characterized by its coordinates in the plane. After completing the first‐dimension separation all fractions are analyzed in parallel second‐dimension separations. Hence, spatial two‐dimensional liquid chromatography potentially provides much higher peak‐production rates than a coupled column multi‐dimensional liquid chromatography approach in which the second‐dimension analyses are performed sequentially. A chip for spatial two‐dimensional liquid chromatography has been manufactured from cyclic olefin copolymer and features a first‐dimension separation channel and 21 parallel second‐dimension separation channels oriented perpendicularly to the former. Compartmentalization of first‐ and second‐dimension developments by physical barriers allowed for a preferential flow path with a minimal dispersion into the second‐dimension separation channels. To generate a homogenous flow across all the parallel second‐dimension channels, a radially interconnected flow distributor containing two zones of diamond‐shaped pillars was integrated on‐chip. A methacrylate ester based monolithic stationary phase with optimized macroporous structure was created in situ in the confines of the microfluidic chip. In addition, the use of a photomask was explored to localize monolith formation in the parallel second‐dimension channels. Finally, to connect the spatial chip to the liquid chromatography instrument, connector ports were integrated allowing the use of Viper fittings. As an alternative, a chip holder with adjustable clasp locks was designed that allows the clamping force to be adjusted.  相似文献   

13.
A novel mercaptotetrazole‐silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol‐end mercaptotetrazole was mixed with hydrolyzed γ‐methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co‐polycondensation and thiol‐ene click reaction in a one‐pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as‐prepared mercaptotetrazole‐silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole‐silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole‐silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion‐exchange interaction. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of the mercaptotetrazole‐silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (= 5), 3.9 (= 3) and 4.0% (= 5), respectively. In addition, the mercaptotetrazole‐silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole‐silica hybrid monolith in the separation of complex samples.  相似文献   

14.
In this study, the applicability of a chiral ionic liquid (CIL) as the sole chiral selector in CE was investigated for the first time. In particular, five amino acid ester‐based CILs were synthesized and used as additives in the BGE in order to evaluate their chiral recognition ability. The performance of these CILs as the sole chiral selectors was evaluated by using 1,1′‐binaphthyl‐2,2‐diylhydrogenphosphate (BNP) as the analyte and by comparing the resolution values. Different parameters were examined, such as the alkyl group bulkiness and the configuration of the cation, the anion type of the CIL and its concentration, and the pH of the BGE, in order to optimize the separation of the enantiomers and to demonstrate the effect that each parameter has on the chiral‐recognition ability of the CIL. Baseline separation of BNP within 13 min was achieved by using a BGE of 100 mM Tris/10 mM sodium tetraboratedecahydrate (pH 8) and a chiral selector of 60 mM l ‐alanine tert butyl ester lactate. The run‐to‐run and batch‐to‐batch reproducibilities were also evaluated by computing the %RSD values of the EOF and the two enantiomer peaks. In both cases, very good reproducibilities were observed, since all %RSD values were below 1%.  相似文献   

15.
The first rigorous evaluation of a UV-initiated porous polymer monolith (PPM) as a stationary phase for chip electrochromatography (ChEC) is described. All channels in an offset T-injector-design-chip (25-microm deep by 50-microm wide channels) were filled by capillary action with an acrylate-based PPM precursor solution and polymerized in situ using 365 nm light for several minutes. Photodefinability of the monolith cast in the channels during the polymerization process was also demonstrated by masking off the injection arms during photoinitiation. The chromatographic performance of this chip was compared with that of chips completely filled with monolith. The detection window was photodefined after polymerization using the detection laser (257 nm doubled argon ion laser) to depolymerize the detection window. A successful ChEC separation of 10 out of 13 polycyclic aromatic hydrocarbons (PAH) was performed with on-column, off-packing laser-induced fluorescence detection at 257 nm. Van Deemter plots for early-, middle-, and late-eluting compounds showed the minimum plate height to be 5 microm. The average number of theoretical plates per meter for the PAH was 200,000. Several factors contributed to irreproducible results. Oxygen was observed to dynamically quench the fluorescence of the sample over time. Improved sealing of the reservoirs solved this problem. A within-chip variability in the retention time of 2-10% RSD was observed. These results demonstrate the feasibility and reliability of the PPM as a solid reversed-phase for electroosmotic flow-driven chip-based chromatography in microscale total analysis systems.  相似文献   

16.
The aim of the present study is the CE performance evaluation for the separation of 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs. In particular, the separation of indoprofen, carprofen, ketoprofen, ibuprofen, and flurbiprofen was obtained by supporting the BGE either with SDS or an amino acid ester‐based ionic liquid (AAIL). The performance of these additives was evaluated by comparing migration times, efficiencies and %RSD values. The addition of the AAIL into the BGE provided baseline separation within 10 min, while in the case of SDS, the analytes eluted within 23 min. The optimum conditions involve a BGE of 100 mM Tris/10 mM sodium tetraboratedecahydrate (pH 8) and 40 mM l ‐alanine tert butyl ester lactate or 10 mM SDS and a temperature of 35°C for AAIL and 20°C for SDS. The run‐to‐run reproducibility was evaluated by computing the %RSD values of the EOF and the analyte peaks. When the AAIL was used, an excellent reproducibility was obtained, since all %RSD values were below 1.3%. On the contrary, the addition of SDS resulted in much higher RSD values (2.1–11.7%). The efficiency values of all analyte peaks were above 102 000 for l ‐AlaC4Lac, in comparison to SDS, which provided efficiency values between 47000 and 76000. Finally, in an attempt to study the synergistic effect of SDS and AAIL, both additives were added into the BGE at concentrations of 10 and 40 mM, respectively. The results were similar to the ones obtained when SDS was used as the sole additive.  相似文献   

17.
A novel monolithic stationary phase with mixed mode of hydrophilic and strong anion exchange (SAX) interactions based on in situ copolymerization of pentaerythritol triacrylate (PETA), N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (DMMSA) and a selected quaternary amine acrylic monomer was designed as a multifunctional separation column for CEC. Although the zwitterionic functionalities of DMMSA and hydroxy groups of PETA on the surface of the monolithic stationary phase functioned as the hydrophilic interaction (HI) sites, the quaternary amine acrylic monomer was introduced to control the magnitude of the EOF and provide the SAX sites at the same time. Three different quaternary amine acrylic monomers were tested to achieve maximum EOF velocity and highest plate count. The fabrication of the zwitterionic monolith (designated as HI and SAX stationary phase) was carried out when [2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate was used as the quaternary amine acrylic monomer. The separation mechanism of the monolithic column was discussed in detail. For charged analytes, a mixed mode of HI and SAX was observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(PETA‐co‐DMMSA‐co‐[2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate) monolithic column. The optimized monolith showed good separation performance for a range of polar analytes including nucleotides, nucleic acid bases and nucleosides, phenols, estrogens and small peptides. The column efficiencies greater than 192 000 theoretical plates/m for estriol and 135 000 theoretical plates/m for charged cytidine were obtained.  相似文献   

18.
《Electrophoresis》2017,38(13-14):1743-1754
Integration in microfluidics is important for achieving automation. Sample preconcentration integrated with separation in a microfluidic setup can have a substantial impact on rapid analysis of low‐abundance disease biomarkers. Here, we have developed a microfluidic device that uses pH‐mediated solid‐phase extraction (SPE) for the enrichment and elution of preterm birth (PTB) biomarkers. Furthermore, this SPE module was integrated with microchip electrophoresis for combined enrichment and separation of multiple analytes, including a PTB peptide biomarker (P1). A reversed‐phase octyl methacrylate monolith was polymerized as the SPE medium in polyethylene glycol diacrylate modified cyclic olefin copolymer microfluidic channels. Eluent for pH‐mediated SPE of PTB biomarkers on the monolith was optimized using different pH values and ionic concentrations. Nearly 50‐fold enrichment was observed in single channel SPE devices for a low nanomolar solution of P1, with great elution time reproducibility (<7% RSD). The monolith binding capacity was determined to be 400 pg (0.2 pmol). A mixture of a model peptide (FA) and a PTB biomarker (P1) was extracted, eluted, injected, and then separated by microchip electrophoresis in our integrated device with ∼15‐fold enrichment. This device shows important progress towards an integrated electrokinetically operated platform for preconcentration and separation of biomarkers.  相似文献   

19.
《Electrophoresis》2018,39(7):924-932
In this work, an organic‐inorganic hybrid boronate affinity monolithic column was prepared via “one‐pot” process using 4‐vinylphenylboronic acid as organic monomer and divinylbenzene as cross‐linker. The effects of reaction temperature, solvents and composition of organic monomers on the column properties (e.g. morphology, permeability, and mechanical stability) were investigated. A series of test compounds including small neutral molecules, aromatic amines, and cis‐diol compounds were used to evaluate the retention behaviors of the prepared hybrid monolithic column. The results demonstrated that the prepared hybrid monolith exhibited mixed‐interactions including hydrophilicity, cation exchange, and boronate affinity interaction. The run‐to‐run, day‐to‐day and batch‐to‐batch reproducibilities of the prepared hybrid monolith for thiourea's retention time were satisfactory with the relative standard deviations (RSDs) less than 0.09, 1.45 and 4.05% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method.  相似文献   

20.
A new reactive monolith, poly(3‐chloro‐2‐hydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(HPMA‐Cl‐co‐EDMA) was synthesized and post‐functionalized by taurine (2‐aminoethane sulfonic acid) to obtain a zwitterionic stationary phase for capillary electrochromatography. The new stationary phase contained charged groups such as secondary amine providing anodic electroosmotic flow and sulfonic acid groups providing cathodic electroosmotic flow. Hence, the capillary electrochromatography separations with the new zwitterionic monolith were performed with either anodic or cathodic electroosmotic flow. The electrochromatographic separation of alkylbenzenes and phenols was successfully performed. The zwitterionic monolith also allowed the separation of nucleosides using only electrokinetic mode. Theoretical plate numbers up to ~105 plates/m were achieved. Our study is the first report based on poly(HPMA‐Cl‐co‐EDMA) reactive monolith post‐functionalized with a zwitterionic ligand allowing to operate in both anodic and cathodic electroosmotic flow modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号