共查询到20条相似文献,搜索用时 41 毫秒
1.
Anders Wilhelmsson 《Journal of forecasting》2006,25(8):561-578
This paper investigates the forecasting performance of the Garch (1, 1) model when estimated with NINE different error distributions on Standard and Poor's 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of volatility from intra‐day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
2.
Volatility forecasting remains an active area of research with no current consensus as to the model that provides the most accurate forecasts, though Hansen and Lunde (2005) have argued that in the context of daily exchange rate returns nothing can beat a GARCH(1,1) model. This paper extends that line of research by utilizing intra‐day data and obtaining daily volatility forecasts from a range of models based upon the higher‐frequency data. The volatility forecasts are appraised using four different measures of ‘true’ volatility and further evaluated using regression tests of predictive power, forecast encompassing and forecast combination. Our results show that the daily GARCH(1,1) model is largely inferior to all other models, whereas the intra‐day unadjusted‐data GARCH(1,1) model generally provides superior forecasts compared to all other models. Hence, while it appears that a daily GARCH(1,1) model can be beaten in obtaining accurate daily volatility forecasts, an intra‐day GARCH(1,1) model cannot be. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
Volatility spillover from the US to international stock markets: A heterogeneous volatility spillover GARCH model
下载免费PDF全文

A recent study by Rapach, Strauss, and Zhou (Journal of Finance, 2013, 68(4), 1633–1662) shows that US stock returns can provide predictive content for international stock returns. We extend their work from a volatility perspective. We propose a model, namely a heterogeneous volatility spillover–generalized autoregressive conditional heteroskedasticity model, to investigate volatility spillover. The model specification is parsimonious and can be used to analyze the time variation property of the spillover effect. Our in‐sample evidence shows the existence of strong volatility spillover from the US to five major stock markets and indicates that the spillover was stronger during business cycle recessions in the USA. Out‐of‐sample results show that accounting for spillover information from the USA can significantly improve the forecasting accuracy of international stock price volatility. 相似文献
4.
We study intraday return volatility dynamics using a time‐varying components approach, and the method is applied to analyze IBM intraday returns. Empirical evidence indicates that with three additive components—a time‐varying mean of absolute returns and two cosine components with time‐varying amplitudes—together they capture very well the pronounced periodicity and persistence behaviors exhibited in the empirical autocorrelation pattern of IBM returns. We find that the long‐run volatility persistence is driven predominantly by daily level shifts in mean absolute returns. After adjusting for these intradaily components, the filtered returns behave much like a Gaussian noise, suggesting that the three‐components structure is adequately specified. Furthermore, a new volatility measure (TCV) can be constructed from these components. Results from extensive out‐of‐sample rolling forecast experiments suggest that TCV fares well in predicting future volatility against alternative methods, including GARCH model, realized volatility and realized absolute value. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
This paper addresses the issue of freight rate risk measurement via value at risk (VaR) and forecast combination methodologies while focusing on detailed performance evaluation. We contribute to the literature in three ways: First, we reevaluate the performance of popular VaR estimation methods on freight rates amid the adverse economic consequences of the recent financial and sovereign debt crisis. Second, we provide a detailed and extensive backtesting and evaluation methodology. Last, we propose a forecast combination approach for estimating VaR. Our findings suggest that our combination methods produce more accurate estimates for all the sectors under scrutiny, while in some cases they may be viewed as conservative since they tend to overestimate nominal VaR. 相似文献
6.
In this paper we study the performance of the GARCH model and two of its non-linear modifications to forecast weekly stock market volatility. The models are the Quadratic GARCH (Engle and Ng, 1993) and the Glosten, Jagannathan and Runkle (1992) models which have been proposed to describe, for example, the often observed negative skewness in stock market indices. We find that the QGARCH model is best when the estimation sample does not contain extreme observations such as the 1987 stock market crash and that the GJR model cannot be recommended for forecasting. 相似文献
7.
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation. 相似文献
8.
This paper studies the performance of GARCH model and its modifications, using the rate of returns from the daily stock market indices of the Kuala Lumpur Stock Exchange (KLSE) including Composite Index, Tins Index, Plantations Index, Properties Index, and Finance Index. The models are stationary GARCH, unconstrained GARCH, non‐negative GARCH, GARCH‐M, exponential GARCH and integrated GARCH. The parameters of these models and variance processes are estimated jointly using the maximum likelihood method. The performance of the within‐sample estimation is diagnosed using several goodness‐of‐fit statistics. We observed that, among the models, even though exponential GARCH is not the best model in the goodness‐of‐fit statistics, it performs best in describing the often‐observed skewness in stock market indices and in out‐of‐sample (one‐step‐ahead) forecasting. The integrated GARCH, on the other hand, is the poorest model in both respects. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
9.
This paper investigates the time-varying volatility patterns of some major commodities as well as the potential factors that drive their long-term volatility component. For this purpose, we make use of a recently proposed generalized autoregressive conditional heteroskedasticity–mixed data sampling approach, which typically allows us to examine the role of economic and financial variables of different frequencies. Using commodity futures for Crude Oil (WTI and Brent), Gold, Silver and Platinum, as well as a commodity index, our results show the necessity for disentangling the short-term and long-term components in modeling and forecasting commodity volatility. They also indicate that the long-term volatility of most commodity futures is significantly driven by the level of global real economic activity as well as changes in consumer sentiment, industrial production, and economic policy uncertainty. However, the forecasting results are not alike across commodity futures as no single model fits all commodities. 相似文献
10.
This study compares the volatility and density prediction performance of alternative GARCH models with different conditional distribution specifications. The conditional residuals are specified as normal, skewedHyphen;t or compound Poisson (jump) distribution based upon a nonlinear and asymmetric GARCH (NGARCH) model framework. The empirical results for the S&P 500 and FTSE 100 index returns suggest that the jump model outperforms all other models in terms of both volatility forecasting and density prediction. Nevertheless, the superiority of the nonHyphen;normal models is not always significant and diminished during the sample period on those occasions when volatility experiences an obvious structural change. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
Effectively explaining and accurately forecasting industrial stock volatility can provide crucial references to develop investment strategies, prevent market risk and maintain the smooth running of national economy. This paper aims to discuss the roles of industry‐level indicators in industrial stock volatility. Selecting Chinese manufacturing purchasing managers index (PMI) and its five component PMI as the proxies of industry‐level indicators, we analyze the contributions of PMI on industrial stock volatility and further compare the volatility forecasting performances of PMI, macroeconomic fundamentals and economic policy uncertainty (EPU), by constructing the individual and combination GARCH‐MIDAS models. The empirical results manifest that, first, most of the PMI has significant negative effects on industrial stock volatility. Second, PMI which focuses on the industrial sector itself is more helpful to forecast industrial stock volatility compared with the commonly used macroeconomic fundamentals and economic policy uncertainty. Finally, the combination GARCH‐MIDAS approaches based on DMA technique demonstrate more excellent predictive abilities than the individual GARCH‐MIDAS models. Our major conclusions are robust through various robustness checks. 相似文献
12.
In a conditional predictive ability test framework, we investigate whether market factors influence the relative conditional predictive ability of realized measures (RMs) and implied volatility (IV), which is able to examine the asynchronism in their forecasting accuracy, and further analyze their unconditional forecasting performance for volatility forecast. Our results show that the asynchronism can be detected significantly and is strongly related to certain market factors, and the comparison between RMs and IV on average forecast performance is more efficient than previous studies. Finally, we use the factors to extend the empirical similarity (ES) approach for combination of forecasts derived from RMs and IV. 相似文献
13.
The importance of modelling correlation has long been recognised in the field of portfolio management, with large‐dimensional multivariate problems increasingly becoming the focus of research. This paper provides a straightforward and commonsense approach toward investigating a number of models used to generate forecasts of the correlation matrix for large‐dimensional problems. We find evidence in favour of assuming equicorrelation across various portfolio sizes, particularly during times of crisis. During periods of market calm, however, the suitability of the constant conditional correlation model cannot be discounted, especially for large portfolios. A portfolio allocation problem is used to compare forecasting methods. The global minimum variance portfolio and Model Confidence Set are used to compare methods, while portfolio weight stability and relative economic value are also considered. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
Dimitrios P. Louzis Spyros Xanthopoulos‐Sisinis Apostolos P. Refenes 《Journal of forecasting》2013,32(6):561-576
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
Nicholas Taylor 《Journal of forecasting》2008,27(8):721-742
This paper examines the benefits to forecasters of decomposing close-to-close return volatility into close-to-open (nighttime) and open-to-close (daytime) return volatility. Specifically, we consider whether close-to-close volatility forecasts based on the former type of (temporally aggregated) data are less accurate than corresponding forecasts based on the latter (temporally disaggregated) data. Results obtained from seven different US index futures markets reveal that significant increases in forecast accuracy are possible when using temporally disaggregated volatility data. This result is primarily driven by the fact that forecasts based on such data can be updated as more information becomes available (e.g., information flow from the preceding close-to-open/nighttime trading session). Finally, we demonstrate that the main findings of this paper are robust to the index futures market considered, the way in which return volatility is constructed, and the method used to assess forecast accuracy. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
This paper compares the information content of realized measures constructed from high‐frequency data and implied volatilities from options in the context of forecasting volatility. The comparison is based on within‐sample and out‐of‐sample (over horizons of 1–22 days) forecasts of daily S&P 500 index return volatility. The paper adds to the findings of previous studies, by considering recent developments in the related practice and the literature. It is shown that, for within‐sample fitting, the realized measure is more informative than the implied volatility. In contrast, the implied volatility is more informative than the realized measure for out‐of‐sample forecasting, in particular for multi‐step‐ahead forecasting. Moreover, we show that it is helpful to use all the information provided by the realized measure and the implied volatility for the within‐sample fitting. For multi‐step‐ahead forecasting, however, it is better to use only the implied volatility. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
Suleyman Gokcan 《Journal of forecasting》2000,19(6):499-504
ARCH and GARCH models are substantially used for modelling volatility of time series data. It is proven by many studies that if variables are significantly skewed, linear versions of these models are not sufficient for both explaining the past volatility and forecasting the future volatility. In this paper, we compare the linear(GARCH(1,1)) and non‐linear(EGARCH) versions of GARCH model by using the monthly stock market returns of seven emerging countries from February 1988 to December 1996. We find that for emerging stock markets GARCH(1,1) model performs better than EGARCH model, even if stock market return series display skewed distributions. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
18.
This paper considers the forecast accuracy of a wide range of volatility models, with particular emphasis on the use of power transformations. Where one‐period‐ahead forecasts are considered, the power autoregressive models are ranked first by a range of error metrics. Over longer forecast horizons, however, generalized autoregressive conditional heteroscedasticity models are preferred. A value‐at‐risk‐based forecast assessment indicates that, while the forecast errors are independent, they are not independent and identically distributed, although this latter result is sensitive to the choice of forecast horizon. Our results are robust across a number of different asset markets. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
We investigate the realized volatility forecast of stock indices under the structural breaks. We utilize a pure multiple mean break model to identify the possibility of structural breaks in the daily realized volatility series by employing the intraday high‐frequency data of the Shanghai Stock Exchange Composite Index and the five sectoral stock indices in Chinese stock markets for the period 4 January 2000 to 30 December 2011. We then conduct both in‐sample tests and out‐of‐sample forecasts to examine the effects of structural breaks on the performance of ARFIMAX‐FIGARCH models for the realized volatility forecast by utilizing a variety of estimation window sizes designed to accommodate potential structural breaks. The results of the in‐sample tests show that there are multiple breaks in all realized volatility series. The results of the out‐of‐sample point forecasts indicate that the combination forecasts with time‐varying weights across individual forecast models estimated with different estimation windows perform well. In particular, nonlinear combination forecasts with the weights chosen based on a non‐parametric kernel regression and linear combination forecasts with the weights chosen based on the non‐negative restricted least squares and Schwarz information criterion appear to be the most accurate methods in point forecasting for realized volatility under structural breaks. We also conduct an interval forecast of the realized volatility for the combination approaches, and find that the interval forecast for nonlinear combination approaches with the weights chosen according to a non‐parametric kernel regression performs best among the competing models. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
This intention of this paper is to empirically forecast the daily betas of a few European banks by means of four generalized autoregressive conditional heteroscedasticity (GARCH) models and the Kalman filter method during the pre‐global financial crisis period and the crisis period. The four GARCH models employed are BEKK GARCH, DCC GARCH, DCC‐MIDAS GARCH and Gaussian‐copula GARCH. The data consist of daily stock prices from 2001 to 2013 from two large banks each from Austria, Belgium, Greece, Holland, Ireland, Italy, Portugal and Spain. We apply the rolling forecasting method and the model confidence sets (MCS) to compare the daily forecasting ability of the five models during one month of the pre‐crisis (January 2007) and the crisis (January 2013) periods. Based on the MCS results, the BEKK proves the best model in the January 2007 period, and the Kalman filter overly outperforms the other models during the January 2013 period. Results have implications regarding the choice of model during different periods by practitioners and academics. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献