首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we present the application of an exfoliated graphite electrode modified with gold nanoparticles (AuNPs) for the detection of As(III) in acidic media. Gold nanoparticles were deposited on the surface of an exfoliated graphite electrode by electrodeposition at a potential window of ?0.2 V to 1.2 V. This was followed by activation in 0.5 M H2SO4 with 10 cycles from 0.6 V to 1.4 V. The modification of exfoliated graphite (EG) showed an increased electroactive surface area of the electrode and improved peak current output in a Fe(CN)63?/4? redox probe. EG‐AuNPs electrode was used to detect As(III) in 1.0 M HNO3 using square wave anodic stripping voltammetry (SWASV) technique at optimum conditions of pH 3, deposition potential of ?0.8 V, deposition time of 180 s, frequency of 5 Hz and pulse amplitude of 50 mV. The EG‐AuNPs electrode detected As(III) in solution to a limit of 0.58 ppb with regression of 0.9993. The method reported is simple, cheap and possesses good reproducibility. The developed electrochemical sensor was applied in the detection of As (III) in an industrial real water sample. The results of the real water sample analysis from the developed method are comparable with the inductively coupled plasma – optical emission spectroscopy (ICP‐OES) results.  相似文献   

2.
Redox properties of As(III) species have been studied in molten KGaCl4. The plot of equilibrium potential of As vs acidity is interpreted in terms of reaction AsCl4? + 3 e = As + 4 Cl?. X-Ray analysis of electrodeposits shows that only As is formed under potentiostatic conditions. Conversely, gallium arsenide is observed under galvanostatic conditions, for which the electrode potential becomes very negative.  相似文献   

3.
《Electroanalysis》2018,30(5):928-936
Ceria cubes decorated with manganese oxide nanoparticles (Mn2O3/CeO2 nanocubes) were synthesized and used to modify a Au electrode for analysis of As(III) in aqueous solution. This modified electrode displayed improved sensitivity than either oxide on their own, indicating a synergistic effect due to the effect of Mn2O3 on the properties of CeO2. The improved sensitivity could be ascribed to the enhanced As (III) adsorption ability of Mn2O3/CeO2 nanocube during electrochemical pre‐concentration, combined with the well known As(III) sensing qualities of the gold substrate. The Mn2O3/CeO2 nanocube modified gold electrode behaved as a promising sensor with stable, repeatable square wave anodic stripping voltammetry (SWASV) peaks, separated from common interfering ions in natural water including Cu (II) under practical conditions. Repeatability and stability studies revealed the As (III) sensor to be robust and reliable, with a sensitivity of 0.0414 μA/ppb and a limit of detection (LoD) of 3.35 ppb under optimized conditions, indicating a possible general use of this class of heteronanostructures in electroanalytical chemistry for studies that rely upon adsorption of deposition of the analyte prior to stripping analysis.  相似文献   

4.
This paper describes a new voltammetric procedure for the inorganic speciation of As(III) and As(V) in water samples. The procedure is based on the chemical reduction of arsenate [As(V)] to arsenite [As(III)] followed by the voltammetric determination of total arsenic as As(III) at the hanging mercury drop electrode (HMDE) by adsorptive cathodic stripping voltammetry (AdCSV) in the presence of sodium diethyl dithiocarbamate (SDDC). The reduction step involved the reaction with a mixture of Na2S2O5 and Na2S2O3 in the concentrations 2.5 and 0.5 mg mL?1, respectively, and the sample heating at 80 °C for 45 min. The linear range for the determination of total arsenic as As(III) in the presence of SDDC was between 5 and 150 μg L?1 for a deposition time of 60 s (r=0.992). A detection limit of 1.05 μg L?1 for total As was calculated for the method in water samples using a deposition time of 60 s. The detection limits of 4.2 μg L?1 and 15.0 μg L?1 for total As in seawater and dialysis concentrates, respectively, were calculated using a deposition time of 60 s. The relative standard deviations calculated were 2.5 and 4.0% for five measurements of 20 μg L?1 As(V) as As(III) in water and dialysis concentrates, respectively, after chemical reduction under optimized conditions. The method was applied for the determination of As(III) and total As in samples of dialysis water, mineral water, seawater and dialysis concentrates. Recovery values between 86.0 and 104.0% for As(III) and As(V) added to the samples prove the satisfactory accuracy and applicability of the procedure for the arsenic monitoring.  相似文献   

5.
New schemes of arsenic speciation by anodic stripping voltammetry are developed at neutral pH based on the difference in electrochemical behaviour of the As(III) and As(V) forms. Detection is performed in sulphite medium (0.1 M Na2SO3) in the presence of Mn(II) (10?6 M), which is known to catalyse the reduction of As(V), making it detectable by ASV. Two speciation schemes are proposed. If As(III) > As(V), then As(III) and total As(III) + As(V) are determined in separate voltammetric cells after oxidation of As(III) to As(V) (5 min ozone purging), similar to previous studies. However, when As(V) > As(III), both As(III) and As(V) can be determined consecutively, within the same cell. In this case, two simple variants were successfully tested, depending on the size of the As(III) peak in comparison to the linearity range. The working electrode is an ensemble of gold microelectrodes obtained by HAuCl4 electrolysis at a carbon black–polyethylene composite (ratio 30:70). No purging is required, the electrode is sensitive, robust and has a long lifetime. Calculated LODs of As(III) and As(V) are 0.09 μg L?1 and 0.35 μg L?1, respectively (3σ, tdep = 20 s). The proposed procedures are fast, simple and environmental-friendly.  相似文献   

6.
Redox cycling of iron is a critical aspect of iron toxicity. Reduction of a low‐molecular‐weight iron(III)‐complex followed by oxidation of the iron(II)‐complex by hydrogen peroxide may yield the reactive hydroxyl radical (OH.) or an oxoiron(IV) species (the Fenton reaction). Complexation of iron by a ligand that shifts the electrode potential of the complex to either to far below ?350 mV (dioxygen/superoxide, pH=7) or to far above +320 mV (H2O2/HO., H2O pH=7) is essential for limitting Fenton reactivity. The oral chelating agents CP20, CP502, CP509, and ICL670 effectively remove iron from patients suffering from iron overload. We measured the electrode potentials of the iron(III) complexes of these drugs by cyclic voltammetry with a mercury electrode and determined the dependence on concentration, pH, and stoichiometry. The standard electrode potentials measured are ?620 mV, ?600 mV, ?535 mV, and ?535 mV with iron bound to CP20, ICL670, CP502, and CP509, respectively, but, at lower chelator concentrations, electrode potentials are significantly higher.  相似文献   

7.
In this study, a new strategy was proposed for the preparation of As (III)-imprinted polymer by using arsenic (methacrylate)3 as template. Precipitation polymerization was utilized to synthesize nano-sized As (III)-imprinted polymer. Methacrylic acid and ethylene glycol dimethacrylate were used as the functional monomer and cross-linking agent, respectively. In order to assembly functional monomers around As (III) ion, sodium arsenite and methacrylic acid were heated in the presence of hydroquinone, leading to arsenic (methacrylate)3. The nano-sized As (III) selective polymer was characterized by FT-IR and scanning electron microscopy techniques (SEM). It was demonstrated that arsenic was recognized as As3+ by the selective cavities of the synthesized IIP. Based on the prepared polymer, the first arsenic cation selective membrane electrode was introduced. Membrane electrode was constructed by dispersion of As (III)-imprinted polymer nanoparticles in poly(vinyl chloride), plasticized with di-nonylphthalate. The IIP-modified electrode exhibited a Nernstian response (20.4 ± 0.5 mV decade−1) to arsenic ion over a wide concentration range (7.0 × 10−7 to 1.0 × 10−1 mol L−1) with a lower detection limit of 5.0 × 10−7 mol L−1. Unlike this, the non-imprinted polymer (NIP)-based membrane electrode was not sensitive to arsenic in aqueous solution. The selectivity of the developed sensor to As (III) was shown to be satisfactory. The sensor was used for arsenic determination in some real samples.  相似文献   

8.
This work presents an electrochemical study of Y(III) ions on W electrode and liquid Zn electrode and co-reduction mechanism of Y(III) and Zn(II) on W electrode in LiCl-KCl eutectic melts. Cyclic voltammogram and current reversal chronopotentiogram revealed that the electrochemical reaction of Y(III) on W electrode proceeds a single step mechanism of Y(III) to Y(0). On liquid Zn electrode, the deposition potential of Y(III) is more positive than that on W electrode due to the formation of Y-Zn solution and the reduction process was found to be a diffusion controlled and quasi-reversible at lower scan rate of 0.1 V/s. Based on the results of cyclic voltammometry, square wave voltammetry, and chronopoteniometry, the Y-Zn intermetallics could be formed by co-reduction process of Y(III) and Zn(II) on W electrode in LiCl-KCl-ZnCl2-YCl3 molten salts. Moreover, the electrochemical extracting metallic Y was conducted by galvanostatic and potentiostatic electrolysis on liquid Zn electrode. Electrolysis products consisted of Zn and YZn12 phases characterized by scanning electron microscopy with energy dispersive spectrometry and X-ray diffraction. Meanwhile, the change of Y(III) concentration in LiCl-KCl eutectic melts was detected by inductive coupled plasma atomic emission spectrometer and the extraction efficiency could be estimated.  相似文献   

9.
In this work, a new sensor is proposed for the stripping voltammetric determination (anodic stripping voltammetry—ASV) of total arsenic(V) or arsenic(III). The sensor is based on an Fe-modified carbon composite electrode containing 30 % carbon black–high-pressure polyethylene (CB/PE). The modification with iron is achieved by the addition of Fe(III) or Fe(II) ions to the sample solution and co-electrodeposition of iron and arsenic on the CB/PE electrode. In anodic stripping voltammetry, two peaks are observed: an Fe peak at ?0.45 or ?0.29 V and a peak at 0.12?±?0.07 V which depends on the arsenic concentration and corresponds to the As(0) → As(III) oxidation, as is the case with other solid electrodes. The optimum conditions proposed for ASV determination of As(V) and As(III) in solutions in the presence of dissolved oxygen are the following: the background electrolyte is 0.005 M HCl containing 0.5–1 mg/?L Fe(III) for As(V) and containing 1.0–1.5 mg/?L Fe(III) for As(III), respectively; E dep?=??2.3 V; rest period at ?0.10 V for 3–5 s before the potential sweep from ?0.2 to +0.4 V; scan rate is 120 mV/?s. The detection limit (LOD, t?=?120 s) for As(III) and As(V) is 0.16 and 0.8 μg/?L, respectively. Various hypotheses on the effect of Fe ions and atoms on the electrodeposition and dissolution of arsenic are considered. The new method of determination of As(III) and As(V) differs from known analogues by its simplicity, low cost, and easy accessibility of the electrode material. It allows the voltammetric determination of total arsenic after chemical reduction of all its forms to As(III) or after their oxidation to As(V).  相似文献   

10.
A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6]3+, RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL−1 to 10 U mL−1, with a detection limit down to 0.03 U mL−1. Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence.  相似文献   

11.
A novel method for the oxidative determination of trace arsenic(III) was investigated on highly ordered platinum-nanotube array electrodes (PtNTAEs). The PtNTAEs with a highly organized structure were fabricated by electrochemical deposition of platinum in a 3-aminopropyltrimethoxysilane-modified porous anodic alumina template (PAA). The morphologies and structures of PtNTAEs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Electrochemical experiments proved that the PtNTAEs exhibited better performance for As(III) analysis in comparison with platinum nanoparticles-coated GCE (Ptnano/GCE) or Pt foil electrode. The PtNTAEs showed to provide higher reproducibility and lower detection limit. The relative standard deviation (RSD) was 3.5% for 50 repeated measurements of 20 μM As(III), and the limit of detection (LOD) was 0.1 ppb, which was typically 1–2 orders of magnitude lower than that of Ptnano/GCE or Pt foil electrode.  相似文献   

12.
《Analytical letters》2012,45(10):647-658
Abstract

The electrochemical behavior of the system Eu(III)/Eu(II) in aqueous formamide solutions was studied by current reversal chronopotentiometry at a mercury pool electrode, in 1 M NaClO4 The results indicate that double layer effects must be considered rather that ion solvation effects when explaining the influence of formamide on the Eu(III)/Eu(II) electrode reaction.  相似文献   

13.
Electrochemical kinetic parameters of the V(III)/V(II) and Eu(III)/Eu(II) couples in sulfuric, perchloric, hydrochloric, and hydrobromic acids were measured by potentiostatic and double pulse galvanostatic methods. The 2 potentials in these solutions were calculated from electrocapillary measurements and the effect of the 2 potentials on the electrode kinetics was discussed. The kinetic data after the Frumkin correction was applied show a very good agreement in H2SO4, HClO4, and HCl solutions, if we assume that the non-complexed ion, which is partially supplied by the dissociation of complex ions, participates in the electrode reaction. The corrected rate constants in the bromide solution were about ten times larger than those to be expected from the 2 potentials in the case of the V(III)/V(II) couple and a small acceleration effect was observed for the Eu(III)/Eu(II) couple. The greater reaction rate in the bromide solution is explained by the bridging effect.  相似文献   

14.
采用电化学石英晶体微天平(EQCM)技术研究了Britton-Robinson(B-R,pH=1.8~11.2)缓冲溶液和H2SO4介质中电镀铂淦的金电极上As(Ⅲ)的循环伏安行为.通过实时监测EQCM频率等参数的变化过程并利用预电沉积As(O)放大电极响应信号,考察了两电极上As.(O)的电沉积、AsⅢ皿和AsⅤ助组...  相似文献   

15.
Ying Du 《Talanta》2009,79(2):243-1411
We report a simple and novel method of stirring-only-driven accumulation and electrochemical determination of arsenite (As(III)) with both of the oxidation and reduction peaks associated with As(0)/As(III) using a gold nanofilm electrode in neutral solution. Under stirring, a large amount of As(III) was deposited on the modified electrode and the electrochemical response was greatly amplified. The accumulated As(III) on the electrode showed well-defined redox couple in 0.1 M blank phosphate buffer solution (pH 7.0), which could be used for the measurement of As(III). Under optimal conditions, As(III) could be detected in the range from 0.20 to 375 ppb with a detection limit of 0.04 ppb. In particular, with the use of the reduction peak of As(III) the modified electrode exhibits excellent performance for As(III) determination even in the presence of abundant Cu(II). The regeneration of the electrodes is facile with good reproducibility. The electrochemical system was applied to analyze As(III) in lake water, As(III) spiked tap water and drinking water.  相似文献   

16.
In this work, the values of the heterogeneous standard rate constant and the transfer coefficient of the electrochemical system Fe(III)/Fe(II) in 1 M H2SO4 at a polycrystalline gold electrode were determined. The response spectrum to an ac potential of such amplitude as to make the behaviour of the electrode process non-linear was analysed. The experimental study was complemented by a theoretical study of the Fe(III)/Fe(II) system using numerical methods. Comparison of the experimental and theoretical data enabled the kinetic parameters of this electrode process to be determined.  相似文献   

17.
A simple, rapid fabricated and sensitive modified electrode for detection of As(III) in alkaline media was proposed. The modified electrode was prepared by co‐electrodeposition of manganese oxides (MnOx) and gold nanoparticles (AuNPs) on the glassy carbon electrode (GCE) with cyclic voltammetry. Linear sweep anodic stripping voltammetry (LS‐ASV) was employed for the determination of arsenic (III) without interference from Cu(II), Hg(II), and other coexisting metal ions. A lower detection limit of 0.057 µg L?1 (S/N=3) were obtained with a accumulation time of 200 s. The proposed method was successfully applied to determine arsenic (III) in real water samples with satisfactory recoveries.  相似文献   

18.
The thermodynamic model of inorganic arsenic was validated by comparing the predicted As(III) concentration with the experimentally determined one in several river waters samples of the Basque Country (Spain) collected in two sampling campaigns: spring and autumn 2000. This model takes into account the acid-base equilibria of As(III) and As(V) together with the redox equilibria between the H3AsO3 and H3AsO4 species. A correct prediction of As(III) concentration requires the knowledge of the total concentration of arsenic, pH, redox potential (referred to hydrogen electrode), and ionic strength values of the solution. The estimation of the activity coefficients of the arsenic species was performed by means of the Modified Bromley’s Methodology (MBM).In order to perform the experimental As(III) determination, an analytical method was implemented by using an ion exchange separation of As(III)/As(V) on a continuous FIA-IE-HG-AAS system. The total arsenic concentration was determined together with total concentration of the main alkaline or alkaline-earth metals and anions in the natural waters. Temperature compensated measurements of the pH and redox potentials were made in-situ at the sampling sites.For both seasonal campaigns, the agreement between predicted and experimental As(III) is really high for those samples belonging to non polluted river waters.  相似文献   

19.
This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of the redox couple Sm(III)/Sm(II) in an eutectic LiF–CaF2 melt containing SmF3. The first step of reduction for Sm(III) ions involving one electron exchange in soluble/soluble Sm(III)/Sm(II) system was found on a tungsten electrode. The study of the Sm(II)/Sm(0) electrode reaction was not feasible, due to insufficient electrochemical stability of LiF–CaF2. The first step was found reversible at temperatures 1,075 and 1,125 K up to polarization rate 1 V/s and at temperature 1,175 K the process was reversible at all sweep rates applied in this study. The diffusion coefficients (D) of Sm(II) and Sm(III) ions were determined by cyclic voltammetry, showing that D decreases when oxidation state increase, while the activation energy of diffusion (E a) increases. The standard rate constants of charge transfer (k s) were calculated for the redox couple Sm(III)/Sm(II) at 1,075 and 1,125 K based on the data of cyclic voltammetry.  相似文献   

20.
A new grafted polymer electrode (GPE) (polystyrene as polymer) was grafted with acrylonitrile as a monomer using gamma irradiation to produce a new grafted polymer. The redox process of K3Fe(CN)6 during cyclic voltammetry was studied by the new GPE. The ratio of Ipc/Ipa >1 of GPE to GCE Ipc/Ipa = 1.7, indicating that this electrode is a reversible electrode and can be used in conductivity studies by voltammetric analysis. The physical properties of the new electrode GP have good hardness, insolubility, and stability at different high temperatures and at different pH. Also, the sensitivity under conditions of cyclic voltammetry is significantly dependent on pH, electrolyte, and scan rate. At different scan rates, two oxidation peaks and two reduction peaks of Fe(III) were observed in a reversible process: Fe(III) Fe(II), and Fe(II) Fe(0). Interestingly, the redox reaction of Fe(III) solution using GPE remained constant even after 15 cycles. It is therefore evident that the GPE possesses some degree of stability. The potential use of the grafted polymer as a useful electrode material is therefore clearly evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号