首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钙铝合金作为阴极对OLED器件性能的影响   总被引:1,自引:1,他引:0  
为了研究阴极材料对有机电致发光器件的影响,在不改变其他功能层的情况下,分别采用不同比例的Ca/Al合金和纯Al作为器件的阴极制备了4种绿光OLED器件,器件结构分别为:ITO/2T-NATA(15nm)/NPB(25nm)/Alq3:C545T(20nm)/Alq3(30nm)/Ca(X%):Al(100nm)和ITO/2T-NATA(15nm)/NPB(25nm)/Alq3:C545T(20nm)/Alq3(30nm)/Al(100nm)。从电流-电压、电压-亮度、器件的外量子效率和光谱特性等几个方面,对不同比例的Ca/Al合金作为阴极的器件与Al作为阴极的器件进行了对比分析,发现当Ca的质量分数为10%时,器件的亮度达到最大值10100cd/m2,并且器件的效率最高。对上述现象产生的原因进行了探讨,分析了器件光谱与不同阴极和不同驱动电流间的关系,从机理上阐述了OLED器件阴极的选取准则。  相似文献   

2.
一种新型双空穴注入层微腔OLED   总被引:1,自引:1,他引:0  
一种新型有机电致发光二极管的阳极结构,在玻璃衬底上以半透明的Al膜为出光面,通过在空穴注入层(HAT-CN)和空穴传输层(NPB)中间插入三氧化钼(MoO3)层,制备了底发射微腔OLEDs。所制备的器件结构为Glass/Al(15nm)/HAT-CN(10nm)/MoO3(x nm)/NPB(30nm)/Alq3(70nm)/LiF(1nm)/Al(150nm)。通过电流密度-电压-亮度性能说明该结构有利于降低驱动电压和增强器件亮度。器件的最高亮度可以达到14 390cd/m2,起亮电压为3.4V左右。设计的空穴型器件证明了该器件结构具有很好的空穴注入和传输特性。研究了光谱窄化和峰值偏移的微腔效应。  相似文献   

3.
粗化玻璃基板对OLED的影响   总被引:1,自引:0,他引:1  
研究了粗化玻璃对有机电致发光器件的影响,分别在玻璃基板的平滑面及粗糙面上制作有机电致发光器件。所制备的器件结构为Al(15nm)/MoO3(60nm)/NPB(40nm)/Alq3∶C545T(2%,30nm)/Alq3(20nm)/LiF(1nm)/Al(100nm)。从电流密度-电压-亮度性能及光谱特性等方面对两种器件进行了对比分析。实验结果显示:当蒸镀面为平面时,电流密度及亮度均比粗面型高,其最高亮度达到24 410cd/m2。不同蒸镀面器件的相对光谱几乎没有变化,但粗面型器件存在黑斑,对其产生的原因进行了探讨。  相似文献   

4.
研究了一种新型发光材料(E)-2-(2-(9H-fluoren-2-yl)vinyl)quinolato-Zinc的发光性能,利用它的空穴传输和发光特性制备了有机白光器件,器件的结构为:ITO/2T-NATA(15nm)/FHQZn(38nm)/NPB(25nm)/BCP(10nm)/Alq(30nm)/LiF(0.5nm)/Al,其中,(E)-2-(2-(9H-fluoren-2-yl)vinyl)quinoato-Zinc(FHQZn)作为空穴传输层和黄橙色发射层,N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine(NPBX)作为蓝光发射层。器件最大的电流效率为1.68cd/A(at7V),最大的亮度为4624cd/m2(at12V),此时色坐标为(0.28,0.25)。器件的色坐标由7V(66.83cd/m2)时的(0.27,0.29)到12V(4624cd/m2)时的(0.28,0.25)几乎不变,是一个基于新型材料的色度较稳定的有机白光器件。  相似文献   

5.
制作了在N,N′-diphenyl-N,N′-bis-1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine(NPB)和aluminium-tris-8-hydroxy-quinoline(Alq3)中分别掺杂黄色荧光染料5,6,11,12,-tetraphe-nylnaphthacene(Rubrene)的双发光区有机黄光电致发光器件。器件的结构为ITO/NPB(30nm)/NPB∶Rubrene(20nm)/Alq3∶Rubrene(20nm)/Alq3(30nm)/LiF(0.8nm)/Al。NPB作为空穴传输层材料,Alq3作为电子传输材料,NPB和Alq3中掺杂Rubrene的浓度分别为0.9%和1.4%。实验结果表明,由于Rubrene具有较强的载流子俘获能力,而且在Alq3和NPB层中进行掺杂,相对于单掺杂层器件为Rubrene提供了更多的俘获空位,从而提高了器件的性能。  相似文献   

6.
基于DOPPP的高效白光OLED器件   总被引:1,自引:1,他引:0  
采用真空热蒸镀的方法,以荧光染料1-(2,5-d imethoxy-4-(1-pyrenyl)-phenyl)pyrene (DOPPP)为蓝发光 层,5,6,11,2-Tetraphenylnaphthacene (Rubrene)为黄发光层,制备了结构为ITO/m-M TDATA(10nm)/NPB(30nm)/ Rubrene (0.2nm)/ DOPPP (x nm)/TAZ(10nm)/Alq3(30nm)/LiF(0.5nm)/Al的双发光层的高效白色有机电 致发光器件(OLED)。通过调整DOPPP层的厚度,研究器件的发光性能。当DOPPP层厚小 于25nm时,器件以 黄光发射为主;当DOPPP层厚为25nm时器件的性能最佳,在电流密度为209.18mA/cm2时,获得最 大亮度为9232cd/m2,在电流密度为103.712mA/cm2时获得最大电流效率4.68cd/A, 并随着驱动电压 的升高,器件的色坐标从(0.366,0.365)变化到(0.384,0.399),都在白光的范围之内;当DOPPP层厚度超过25nm时,器件的效率和亮度 都开始下降。  相似文献   

7.
采用真空蒸镀的方法,制备了以ITO/2T-NATA(15 nm)/NPB(25 nm)/Alq3(30nm)/LiF(1 nm)/Al(100 nm)为基本结构的绿光器件,实验中在NPB(25 nm)与Alq3(30 nm)有机层界面处加入周期性不同的NPB(10 nm)/Alq3(10 nm)结构的有机层.通过实验测得的数据,研究了周期性的空穴传输层与发光层结合这种特殊结构对绿光器件发光性能的影响.根据实验结果,发现在有机层界面处,加入周期不同的NPB(10 nm)/Alq3(10 nm)层虽然会提高器件的起亮电压,但会改善器件的发光效率,而对器件的发光波长与发光区域以及发光亮度影响不大.  相似文献   

8.
首先制备了结构为ITO/m-MTDATA(30 nm)/NPB(20 nm)/CBP:FIrPIC(10%,30 nm)/5,6,11,12-tetraphenylnaphthacene(rubrene)(x nm/Bphen(40 nm)/LiF(0.8 nm)/Al的器件.此器件效率降低,为提高效率,我们又制备了另一器件,其结构为ITO/m-MTDATA(30 nm)/NPB(20 nm)/rubrene(0.2 nm)/CBP:FIrPIC(10%,30 nm)/Bphen(40 nm)/LiF(0.8 nm)/Al.此器件亮度效率及色坐标均有所改善.此器件的最大亮度为14 V时,10050 cd/m2,最大效率为8V时,4.59(cd/A),7 V时,1.89(lm/w).1000 cd/m2时的效率约为4.00 cd/A(10 V时,1.25 lm/w).当亮度由1354 cd/m2变到10050cd/m2时,色坐标由(0.33,0.37)变到(0.34,0.37).  相似文献   

9.
通过Ir(ppy)3的磷光敏化作用,制作了结构为:ITO/2T-NATA(20 nm)/NPBX(20 mm)/CPB∶x%Ir(ppy)3∶0.5%rubrene(8 nm)/NPBX(5 nm)/DPVBi(30 nm)/Alq(30 nm)/LiF(0.5 nm)/Al的有机白光器件.当Ir(ppy)3的掺杂浓度为6%时,器件的性能最好.在15 V的电压下最大亮度达到24 960 cd/m2,在电压为8 V的情况下,发光效率达到最大,为5.17 cd/A.该器件的色坐标在白光等能点附近,是色度较好的白光器件.  相似文献   

10.
采用一种既具有空穴传输特性又具有发光特性的新型荧光染料(E)-2-(4-(dipheny-lamino)styryl)quinolato-zinc (TPAHQZn)作为发光层,制备了结构为 ITO/ 4,4′,4″-{N,-(2-naphthyl)-N-phenylamino}-triphenylamine (2T-NATA)(15 nm)/ (E)-2-(4-(diphenylamino)styryl)quinolato-zinc (TPAHQZn)(x nm)/9,10-bis(2-naphthyl)anthracene(ADN)(31 nm)/ tris(8-quinolinolato) aluminum(Alq3)((65-x) nm)/LiF(0.6 nm)/Al的黄色有机电致发光器件.研究了不同厚度的发光层对器件性能的影响.TPAHQZn厚度为30 nm 的器件在14 V电压下实现了黄光发射,最大发光亮度为 2 479 cd/m2,最大电流效率为0.84 cd/A,色坐标由8 V(6.346 cd/m2)时的(0.502,0.449 5)到14 V(2 479 cd/m2 )时的(0.497 9,0.453)变化不大,器件的发光颜色稳定.  相似文献   

11.
以CzHQZn为主体的有机发光器件的发光效率   总被引:1,自引:0,他引:1  
采用真空热蒸镀技术,分别制备了结构为ITO/2T-NATA(25nm)/CzHQZn(10~25nm)/TPBi(35nm)/LiF(0.5nm)/Al、ITO/2T-NATA(30nm)/CBP:6%Ir(ppy)3:x%CzHQZn(20nm)/Alq3(50nm)/LiF(0.5nm)/Al和ITO/2T-NATA(30nm)/CBP:6%Ir(ppy)3:10%CzHQZn(xnm)/Alq3((70-x)nm)/LiF(0.5nm)/Al的3组有机电致发光器件(OLED)。器件中,CzHQZn既有空穴传输特性,又是黄光发射的主体。为了提高其发光效率,利用磷光敏化技术,研究了掺杂层中不同掺杂浓度和掺杂层不同厚度时器件的发光效率。结果表明,器件的效率随着掺杂发光层的厚度和掺杂浓度的变化而改变,当发光层的厚度为18nm时,CzHQZn掺杂浓度为10%的器件性能较好;在10V电压下,器件的最大电流效率达到3.26cd/A,色坐标为(0.4238,0.5064),最大亮度达到17560cd/m2。  相似文献   

12.
以8-羟基喹啉(q)和1,3-二苯基-1,3-丙二酮定向合成了有机小分子配合物Znq(DBM),将其作为发光层制备了单色有机电致发光器件(OLED)。在结构为ITO/m-MTDATA(5nm)/NPB(40nm)/Znq(DBM)(60nm)/LiF(0.5nm)/Al(100nm)的器件中,启亮电压为5V,最大亮度达到4 575cd/m2。同时又在器件中引入间隔层BCP,研究其不同厚度对OLED性能的影响。在结构为ITO/m-MTDATA(5nm)/NPB(40nm)/BCP(x nm)/Znq(DBM)(60nm)/LiF(0.5nm)/Al(100nm)的器件中,当BCP层厚为0nm时,发光颜色为黄绿色;当BCP层厚为1nm时,发光颜色为白色,色坐标为(0.29,0.33),最大亮度为2 231cd/m2;当BCP层厚为5nm时,发光颜色为蓝色。根据器件结构和性能,讨论了其内部机理。  相似文献   

13.
高效率非掺杂型白色有机电致发光器件   总被引:1,自引:0,他引:1  
制备了基于rubrene超薄层和NPBX做激子阻挡层的高效率的非掺杂型白色有机电致发光器件.器件结构为:ITO/2T-NATA(20 nm)/NPBX(25-d nm)/rubrene(0.2 nm)/NPBX(d nm)/DPVBi(30 nm)/Alq(30 nm)/LiF(0.5 nm)/Al.器件的电致发光光谱依靠激子阻挡层NPBX厚度d的变化而变化,当NPBX厚度d为5 nm时,器件色坐标从7 V变化到16 V时均在白光的中心区域,有最大电流效率7.91 cd/A(V=7 V)和最大亮度13 540 cd/m2 (V=16 V).  相似文献   

14.
利用C-545T超薄层多层结构的白光器件   总被引:1,自引:1,他引:1  
为了探讨(3-545T超薄层的发光特性,设计了结构为:ITO/2T-NATA(20 nm)/NPBX(20 nm)/C-545T(d nm)/BCP(8 nm)./Alq(40 nm)/LiF(0.5 nm)/Al的绿光器件.结果表明,随着C-545T层厚度d的增加,器件的亮度和效率均下降,这是由于C-545T染料的浓度淬灭效应引起的.在此基础上,制备了基于C-545T超薄层为发光层之一的多层结构的白光器件,器件结构为:ITO/NPBX(30 nm)/Rubrene(0.2 nm)/NPBX(5 nm)/DPVBi (20 nm)/NPBX(4 nm)/C-545T(0.1 nm)/Alq(30 nm)/LiF(0.5 nm)/Al.在驱动电压为16 V时,其最大亮度达到12 320 cd/m2,对应的色坐标为(0.32,0.40),在电压为4 V时,最大光功率效率达到了3.45 lm/w.  相似文献   

15.
通过研究新型荧光材料2-(2-溴-5-乙烯-噻吩)-8-羟基喹啉锌(BTHQZn)的电致发光特性,发现BTHQZn具有良好的电致发光特性和空穴传输特性,利用此特性制备了掺杂型有机电致黄光器件,结构为ITO/2T-NATA(30nm)/CBP∶5%Ir(ppy)3∶10%BTHQZn(20nm)/Alq3(50nm)/LiF(0.5nm)/Al,器件在12V时实现了黄绿光发射,最大发光亮度为4552cd/m2,色坐标为(0.3954,0.4976),在11V电压下的最大发光效率为2.82cd/A。  相似文献   

16.
通过结构为ITO/2T-NATA(20nm/NPBx(20nm)/MCzHQZn(30nm)/BCP(10nm)/Alq3(20nm)/LiF(0.5nm)/Al、ITO/2T-NATA(30nm/MCzHQZn(30nm)/BCP(10nm)/Alq3(30nm)/LiF(0.5nm)/Al和ITO/2T-NATA(20nm/MCzHQZn(30nm)/NPBx(16nm)/BCP(10nm)/Alq3(25nm)/LiF(0.5nm)/Al的3组有机电致发光器件(OLED),证明了MCzHQZn既具有空穴传输特性,又具有较好的发光特性。MCzHQZn在器件1中作发光层,器件最大亮度在电压16V时达到3692cd/m2,电压13V时的最大效率为0.90cd/A,发光的峰值波长为564nm;MCzHQZn在器件2中既作发光层又作空穴传输层,器件最大亮度在电压为13V时达到1929cd/m2,电压12V时的最大效率为0.57cd/A,发光的峰值波长也为564nm;MCzHQZn在器件3中作空穴传输层,由NPBx作发光层,器件最大亮度在电压为14V时达到3556cd/m2,电压9V时的最大效率为1.08cd/A,发光的峰值波长为444nm。  相似文献   

17.
热处理对Rubrene/C70有机太阳能电池性能的改善   总被引:1,自引:1,他引:0  
制备了ITO/MoO3(6nm)/Rubrene(30nm)/C70(30nm)/BCP(6nm)/Al(150nm)的PN结构和ITO/MoO3(5nm)/Rubrene(25nm)/Rubrene:C70(5nm)/C70(25nm)/BCP(6nm)/Al(150nm)的PIN结构有机太阳能电池(OSCs)。通过对两种器件进行热处理,研究热处理对OSCs性能的影响。实验表明,在热处理后,PN结构和PIN结构器件的短路电流密度分别达到了3.526mA·cm-2和5.413mA·cm-2,功率转换效率分别达到了1.43%和2.09%。与未经过热处理的器件相比,PN结构和PIN结构器件的短路电流密度、填充因子、功率转换效率分别提高了19.0%、7.1%、28.3%和4.8%、20%、24.1%。可见,热处理可以提高Rubrene/C70OSCs的性能。  相似文献   

18.
锌金属配合物BFHQZn的白色有机电致发光器件   总被引:2,自引:2,他引:0  
利用新型荧光染料2-溴-4-氟苯乙烯-8-羟基喹啉锌(BFHQZn,(E)-2-(2-bromo-4-fluorostyryl)quinolato-Zinc)的电致发光(EL)特性,制备了非掺杂型的有机电致白光器件(WOLED)。器件的结构为ITO/CuPc(10nm)/NPBX(25 nm)/BFHQZn(18 nm)/NPBX(xnm)/BCP(10 nm)/Alq3((47-x)nm)/LiF(0.5 nm)/Al,当x为12时,得到了色度最好和效率最大的WOLED,最大电流效率为1.11 cd/A(at 10 V),最大的亮度为817 cd/m2(at 15 V),当驱动电压从7 V(启亮)升高到15 V(最高亮度)时,器件色坐标由(0.32,038)改变为(0.30,0.28)。  相似文献   

19.
采用真空蒸镀的方法,制备了以ADN为发光层的高效率非掺杂蓝色有机电致发光器件.器件的结构为ITO/2T-NATA(15 nm)/NPBx(15 nm)/ADN(25+d nm)/BCP(8 nm)/ Alq_3(30 nm)/LiF(0.5 nm)/Al.通过调整ADN层的厚度,研究了器件的发光性能.测试结果表明,器件在6 V电压时电流效率达到最大,为2.77 cd/A;在16 V时亮度达到最大,为7 227 cd/m~2.当ADN的厚度为30 nm、器件的电压从5 V变化到16 V时,色坐标在(0.21,0.32)至(0.19,0.29)之间,均在蓝光区域.
Abstract:
Using ADN as the emitting layer, high efficient undoped blue organic light-emitting diodes(OLEDs) with a typical structure of (ITO)/ 2T-NATA(15 nm)/ NPBx(15 nm)/ ADN(25+d nm)/BCP(8 nm)/Alq_3 (30 nm)/LiF(0.5 nm)/Al were fabricated via thermal vacuum deposition method. This device has a maximum luminous efficiency of 2.77 cd/A at 6 V and maximum luminance of 7 227 cd/m~2 at 16 V. The CIE coordinates of the device are within the blue region when the thickness of ADN is 30 nm and the voltage changes among the range of 6~16 V.  相似文献   

20.
发光层掺杂蓝色OLED的光电性能研究   总被引:1,自引:0,他引:1  
采用真空热蒸镀技术,在不同的掺杂浓度下,制备了4种双异质型结构的蓝色有机电致发光器件(OLED),其结构为ITO/CuPc(30 nm)/NPB(40 nm)/TPBi(30 nm):GDI691(x%)/Alq3(20 nm)/LiF(1 nm)/Al(50 nm),其中x%为发光层掺杂浓度,分别取1、2、3和4 %.从实验结果分析可知:蓝色OLED的电流-电压(I-V)特性曲线、亮度-电压(L-V)曲线、亮度-电流(L-I)曲线及效率等光电性能随着发光层掺杂浓度的变化而改变.当驱动电压为15 V、掺杂浓度为3%时,器件可获得最大亮度6100 cd·m-2,色坐标CIE为x=0.147、y=0.215,最大流明效率为1.221 m·W-1,电致发光(EL)发光光谱的峰值为468 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号