首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
RNase P from Escherichia coli cleaves the coenzyme B12 riboswitch from E. coli and a similar one from Bacillus subtilis. The cleavage sites do not occur in any recognizable structure, as judged from theoretical schemes that have been drawn for these 5' UTRs. However, it is possible to draw a scheme that is a good representation of the E. coli cleavage site for RNase P and for the cleavage site in B. subtilis. These data indicate that transient structures are important in RNase P cleavage and in riboswitch function. Coenzyme B12 has a small inhibitory effect on E. coli RNase P cleavage of the E. coli riboswitch. Both E. coli RNase P and a partially purified RNase P from Aspergillus nidulans mycelia succeeded in cleaving a putative arginine riboswitch from A. nidulans. The cleavage site may be a representative of another model substrate for eukaryotic RNase P. This 5' UTR controls splicing of the arginase mRNA in A. nidulans. Four other riboswitches in E. coli were not cleaved by RNase P under the conditions tested.  相似文献   

2.
3.
4.
5.
Translation inhibitors such as chloramphenicol in prokaryotes or cycloheximide in eukaryotes stabilize many or most cellular mRNAs. In Escherichia coli, this stabilization is ascribed generally to the shielding of mRNAs by stalled ribosomes. To evaluate this interpretation, we examine here how inhibitors affect the stabilities of two untranslated RNAs, i.e., an engineered lacZ mRNA lacking a ribosome binding site, and a small regulatory RNA, RNAI. Whether they block elongation or initiation, all translation inhibitors tested stabilized these RNAs, indicating that stabilization does not necessarily reflect changes in packing or activity of translating ribosomes. Moreover, both the initial RNase E-dependent cleavage of RNAI and lacZ mRNA and the subsequent attack of RNAI by polynucleotide phosphorylase and poly(A)-polymerase were slowed. Among various possible mechanisms for this stabilization, we discuss in particular a passive model. When translation is blocked, rRNA synthesis is known to increase severalfold and rRNA becomes unstable. Meanwhile, the pools of RNase E and polynucleotide phosphorylase, which, in growing cells, are limited because these RNases autoregulate their own synthesis, cannot expand. The processing/degradation of newly synthesized rRNA would then titrate these RNases, causing bulk mRNA stabilization.  相似文献   

6.
7.
8.
7-Aminomethyl-7-deazaguanine (preQ1) sensitive mRNA domains belong to the smallest riboswitches known to date. Although recent efforts have revealed the three-dimensional architecture of the ligand–aptamer complex less is known about the molecular details of the ligand-induced response mechanism that modulates gene expression. We present an in vitro investigation on the ligand-induced folding process of the preQ1 responsive RNA element from Fusobacterium nucleatum using biophysical methods, including fluorescence and NMR spectroscopy of site-specifically labeled riboswitch variants. We provide evidence that the full-length riboswitch domain adopts two different coexisting stem-loop structures in the expression platform. Upon addition of preQ1, the equilibrium of the competing hairpins is significantly shifted. This system therefore, represents a finely tunable antiterminator/terminator interplay that impacts the in vivo cellular response mechanism. A model is presented how a riboswitch that provides no obvious overlap between aptamer and terminator stem-loop solves this communication problem by involving bistable sequence determinants.  相似文献   

9.
10.
The bacteriophage lambda cIII gene product regulates the lysogenic pathway by stabilizing the lambda cII regulatory protein. Our results show that the expression of the lambda cIII gene is subject to specific requirements. Tests of a set of cIII-lacZ gene and operon fusions reveal that a sequence upstream of the cIII ribosome binding site is needed for cIII translation. The sequence contains an inefficient RNase III processing site. Furthermore, expression of cIII is drastically reduced in cells lacking RNase III. We have isolated a phage carrying a mutation (r1), which lies in the upstream sequence, that leads to a reduction in cIII translation and inactivates the RNase III processing site. The r1 mutant is nevertheless still dependent on RNase III for cIII translation; r1 reduces cIII translation by a factor of 3 in wild-type cells and by a factor of approximately equal to 30 in an RNase III mutant host. We propose that RNase III stimulates cIII translation by binding to the upstream sequence and thereby exposing the cIII ribosome binding site. This stimulation does not involve RNA cleavage. Consistent with this hypothesis is our finding that, in vitro, unprocessed cIII mRNA is translated, whereas RNase III-cleaved cIII mRNA is not.  相似文献   

11.
Tetrahydrofolate (THF), a biologically active form of the vitamin folate (B(9)), is an essential cofactor in one-carbon transfer reactions. In bacteria, expression of folate-related genes is controlled by feedback modulation in response to specific binding of THF and related compounds to a riboswitch. Here, we present the X-ray structures of the THF-sensing domain from the Eubacterium siraeum riboswitch in the ligand-bound and unbound states. The structure reveals an "inverted" three-way junctional architecture, most unusual for riboswitches, with the junction located far from the regulatory helix P1 and not directly participating in helix P1 formation. Instead, the three-way junction, stabilized by binding to the ligand, aligns the riboswitch stems for long-range tertiary pseudoknot interactions that contribute to the organization of helix P1 and therefore stipulate the regulatory response of the riboswitch. The pterin moiety of the ligand docks in a semiopen pocket adjacent to the junction, where it forms specific hydrogen bonds with two moderately conserved pyrimidines. The aminobenzoate moiety stacks on a guanine base, whereas the glutamate moiety does not appear to make strong interactions with the RNA. In contrast to other riboswitches, these findings demonstrate that the THF riboswitch uses a limited number of available determinants for ligand recognition. Given that modern antibiotics target folate metabolism, the THF riboswitch structure provides insights on mechanistic aspects of riboswitch function and may help in manipulating THF levels in pathogenic bacteria.  相似文献   

12.
Recently, we found that a multicomponent ribonucleolytic degradosome complex formed around RNase E, a key mRNA-degrading and 9S RNA-processing enzyme, contains RNA in addition to its protein components. Herein we show that the RNA found in the degradosome consists primarily of rRNA fragments that have a range of distinctive sizes. We further show that rRNA degradation is carried out in the degradosome by RNase E cleavage of A+U-rich single-stranded regions of mature 16S and 23S rRNAs. The 5S rRNA, which is known to be generated by RNase E processing of the 9S precursor, was also identified in the degradosome, but tRNAs, which are not cleaved by RNase E in vitro, were absent. Our results, which provide evidence that decay of mature rRNAs occurs in growing Escherichia coli cells in the RNA degradosome, implicate RNase E in degradosome-mediated decay.  相似文献   

13.
The highly specific endoribonuclease activities of RNase E (which processes ribosomal 9S RNA into p5S RNA) and RNase K (which initiates decay of the ompA mRNA) are inferred to play a central role in RNA processing and mRNA decay in Escherichia coli. In vivo both activities are affected by a conditional mutation of the ams/rne gene that seems to be complemented at nonpermissive temperatures by a fragment of the groEL gene. Analysis of the relationship between the two nucleases and the heat shock protein revealed that GroEL interacts functionally with an RNase E-like activity but not with an RNase K activity, a groEL mutation affected 9S RNA processing but not ompA mRNA cleavage, RNase E activity could be precipitated with an antibody against GroEL, and a highly purified GroEL preparation contained RNase E activity but not RNase K activity. When purifying RNase E activity, we obtained a preparation containing two major proteins of 60 and 17 kDa. The size and the N-terminal sequence identified the 60-kDa protein as GroEL.  相似文献   

14.
Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6′)-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6′)-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease-resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6′)-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect.  相似文献   

15.
16.
Accessible sites in the 5' noncoding region of the rabbit alpha- and beta-globin mRNAs were identified and compared in deproteinized RNA and in the mRNAs engaged in translation in the reticulocyte lysate. Preparations of RNA and lysate were subjected to limited nuclease digestion by RNase T1 and Neurospora endonuclease, and the cleavage sites were analyzed by a nuclease S1 mapping procedure. The free alpha-globin mRNA contained few nuclease-sensitive sites and its initiation codon AUG was masked. The free beta-globin mRNA contained a larger number of accessible sites and its AUG was highly exposed. The distribution of sensitive sites differed considerably in the lysate. In both mRNA species, a site near the 5' terminus became the one most accessible to Neurospora endonuclease. Also the accessibility of the AUG in beta-globin mRNA decreased considerably. The distribution of accessible sites in the lysate was the same when the mRNAs were undergoing rapid initiation and when initiation became limited after prolonged incubation. Inhibition of initiation by the cap analogue 7-methylguanosine 5'-triphosphate was accompanied by increased sensitivity of some of the sites in both mRNA species. One of the accessible sites in each mRNA species had a sequence complementary to the 3'-terminal portion of the 18S ribosomal RNA.  相似文献   

17.
The RNA degradosome of Escherichia coli is a ribonucleolytic multienzyme complex containing RNase E, polynucleotide phosphorylase, RhlB, and enolase. Previous in vitro and in vivo work has shown that RhlB facilitates the exonucleolytic degradation of structured mRNA decay intermediates by polynucleotide phosphorylase in an ATPase-dependent reaction. Here, we show that deleting the gene encoding RhlB stabilizes a lacZ mRNA transcribed by bacteriophage T7 RNA polymerase. Deleting the gene encoding enolase has little if any effect. Other messages transcribed by T7 polymerase are also stabilized by DeltarhlB. The effect of point mutations inactivating RhlB is comparable with the effect of deleting the gene. Primer extension analysis of the lacZ message indicates that RhlB facilitates endoribonucleolytic cleavage by RNase E, demonstrating a functional interaction between the RNA helicase and the endoribonuclease. The possible physiological role of an RhlB-RNase E pathway and the mechanisms by which RhlB could facilitate RNase E cleavage are discussed.  相似文献   

18.
19.
Role of RNase H in hybrid-arrested translation by antisense oligonucleotides.   总被引:41,自引:3,他引:41  
The mechanism of hybrid-arrested translation by antisense oligodeoxynucleotides has been investigated with the rabbit reticulocyte lysate system. The oligonucleotides studied were directed against different regions of mouse alpha- or beta-globin mRNAs. Freshly prepared reticulocyte lysates were found to contain 1-2% of the level of RNase H in nucleated cells. This level of activity was sufficient to cleave nearly 100% of the targeted mRNA at the site of hybridization with a complementary oligodeoxynucleotide in 1 hr under conditions of active translation. Using poly(rA).oligo(dT) as a competitive inhibitor of the enzyme, hybrid arrest by oligodeoxynucleotides complementary to the sequence spanning the initiation codon or to a sequence in the coding region was found to be due entirely to cleavage of mRNA by RNase H. Hybridization of oligodeoxynucleotides adjacent to the cap site of beta-globin mRNA, but not the alpha-globin mRNA, also inhibited protein synthesis directly. Even in this case, however, cleavage of the mRNA by RNase H was the predominant pathway of inhibition.  相似文献   

20.
Thiamin (vitamin B1) is an essential micronutrient needed as a cofactor for many central metabolic enzymes. Animals must have thiamin in their diet, whereas bacteria, fungi, and plants can biosynthesize it de novo from the condensation of a thiazole and a pyrimidine moiety. Although the routes to biosynthesize these two heterocycles are not conserved in different organisms, in all cases exogenous thiamin represses expression of one or more of the biosynthetic pathway genes. One important mechanism for this control is via thiamin-pyrophosphate (TPP) riboswitches, regions of the mRNA to which TPP can bind directly, thus facilitating fine-tuning to maintain homeostasis. However, there is little information on how modulation of riboswitches affects thiamin metabolism in vivo. Here we use the green alga, Chlamydomonas reinhardtii, which regulates both thiazole and pyrimidine biosynthesis with riboswitches in the THI4 (Thiamin 4) and THIC (Thiamin C) genes, respectively, to investigate this question. Our study reveals that regulation of thiamin metabolism is not the simple dogma of negative feedback control. Specifically, balancing the provision of both of the heterocycles of TPP appears to be an important requirement. Furthermore, we show that the Chlamydomonas THIC riboswitch is controlled by hydroxymethylpyrimidine pyrophosphate, as well as TPP, but with an identical alternative splicing mechanism. Similarly, the THI4 gene is responsive to thiazole. The study not only provides insight into the plasticity of the TPP riboswitches but also shows that their maintenance is likely to be a consequence of evolutionary need as a function of the organisms’ environment and the particular pathway used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号