首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ba(Zr0.05Ti0.95)O3 (BZT) thin film (∼330 nm) was grown on Pt/Ti/SiO2/Si(100) substrate by a simple sol-gel process. The microstructure and the surface morphology of BZT thin film were studied by X-ray diffraction and atomic force microscopy. The optical properties of BZT thin film were obtained by spectroscopic ellipsometry. The optical bandgap was found to be 3.74 eV of direct-transition type. Ferroelectric and dielectric properties of BZT thin film were also discussed. The electrical measurements were conducted on BZT films in metal-ferroelectric-metal (MFM) capacitor configuration. The results showed the film exhibited good ferroelectrity with remanent polarization and coercive electric field of 3.54 μC/cm2 and 95.5 kV/cm, respectively. At 10 kHz, the dielectric constant and dielectric loss of the film are 201 and 0.029, respectively.  相似文献   

2.
Ferroelectric ceramics of (Ba1?2x Sr x Ca x )TiO3 (0?≤?x?≤?0.30) were prepared by a routine solid-state reaction technique. Co-substitution of Sr2+ and Ca2+ for Ba2+ with equal mole in BaTiO3 restrain the maximal dielectric constant K m strongly when 0.2?≥?x?>?0. However, composition (Ba0.4Sr0.3Ca0.3)TiO3 shows the higher maximal dielectric constant. With increasing Sr and Ca content x, temperature T m of the maximal dielectric constant K m shifts to low temperature and all selected compositions for study exhibit a broad phase transition temperature range. The composition (Ba0.4Sr0.3Ca0.3)TiO3 presents characteristics of ferroelectric relaxor, value of K m decreases and temperature T m increases with increasing frequency.  相似文献   

3.
采用溶胶-凝胶法制备了钙钛矿结构的MSnO3(M=Ca,Sr,Ba)晶体.将其作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究其电化学性能.结果表明:CaSnO3、SrSnO3和BaSnO3的首次放电容量分别为894.3 mAh/g、703.8 mAh/g和673.6 mAh/g,首次充电容量分别为418.3 mAh/g、257.8 mAh/g和224.8 mAh/g,不可逆容量损失分别达53.2%、63.3%和66.6%.  相似文献   

4.
Dielectric and ferroelectric properties of Nb-doped Ba0.8Sr0.2TiO3 ceramics   总被引:1,自引:0,他引:1  
Ferroelectric and dielectric properties were investigated for Ba0.8Sr0.2Ti(1?5/4x)Nb x O3 ceramics with different Nb2O5 concentrations. The relations between the ceramic structures and those properties were discussed. The Ba0.8Sr0.2TiO3 doping with 0.01mol% Nb2O5 appears to have a strong ferroelectric effect and better dielectric properties. The max permittivity (? max) is up to 7,521.3 and Ba0.8Sr0.2Ti(1?5/4x)Nb x O3 ceramics has higher permittivity even at room temperature. The permittivity presents broadened curves at large temperature ranges, which suggests a non Curie–Weiss behavior near the transition temperature. The diffuse phase transition coefficient (δ) for Ba0.8Sr0.2Ti(1?5/4x)Nb x O3 doping with 0.01mol% Nb2O5 reaches 0.098, and its PE loop expresses a diffusing curve. The remanent polarization (2P r) and coercive field are 31.3 μC/cm2 and 10 kV/cm, respectively. The PE loop presents a diffusing curve, which is relative to the relaxor characteristic.  相似文献   

5.
以二水合氯化钡、四氯化钛、五水合氯化锡为原料,于碱性环境240℃水热合成12 h得到了平均粒径为(80±10)nm、比表面积为10.8 m2/g的单分散Ba(Ti0.9Sn0.1)O3纳米粉体。与SEM、激光粒度测试仪和BET三种方法分析得到的粉末平均粒径相吻合,表明所得粉末呈单分散状态。研究了反应物初始浓度、矿化剂氢氧化钾过量浓度及反应温度对合成Ba(Ti0.9Sn0.1)O3粉体的影响。  相似文献   

6.
(Pb,Ba)(Zr,Ti)O3 is a relaxor ferroelectric material. Dielectric and ferroelectric properties of (Pb1-x Ba x )(Zr0.70Ti0.30)O3 ceramics have been investigated for compositions varying in the range of 0.20?≤?x?≤?0.30. Reagent grade PbO, ZrO2, TiO2 and BaCO3 raw powders were used, ceramics were fabricated by convenient solid state reaction. The experimental results show that the substitution of Ba for Pb can enhance the ferroelectric relaxor characteristics. With the Ba content increasing, the electric hysteresis was narrowed and the polarization was reduced. Meanwhile the temperature T m that corresponding to the maximal dielectric constant was decreased. It has also been found that the hydrostatic pressure may cause the phase transition more diffuse and move T m to higher temperature.  相似文献   

7.
By the radio frequency (RF) magnetron sputtering methods, (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 (BSTZ) ferroelectric thin films were deposited on the Pt/Ti/SiO2/Si(100) substrates. The crystal structural and microstructure of these thin films were analyzed by means of the XRD, SEM, and AFM. Moreover, the dielectric characteristics were also investigated by the C-V and J-E analyses. The optimal deposition parameters for these BSTZ thin films were: RF power is 160 W, oxygen concentration is 25%, substrate temperature is 580°C, and chamber pressure is 0.075 mPa. Under these optimal deposition conditions, the (111) and (110) oriented polycrystalline of the BSTZ thin films grow easily. And under a bias voltage of 0.5 MV/cm, the dielectric constant and leakage current density of the BSTZ thin films are 191 and 3×10?8 A/cm2, respectively. In addition, under various measured temperatures (0 ~ 80°C) and frequencies (100 kHz ~ 1 MHz), all the dielectric constants remain almost unchanged. Compared to BSTZ thin films reported previously, in this study, the deposited thin films have the advantage of lower leakage current and hence are suitable for the applications of dynamic random access memory.  相似文献   

8.
[(Y0.95,Bi0.05)MnO3] (YBM) films have been grown on Y2O3 buffered Si (001) by pulsed-laser deposition (PLD). We have compared the structural and dielectric properties of YBM films with those of typical YMnO3 films from the viewpoint of lowering the process temperature. The highly c-axis oriented YBM film have been obtained on Y2O3/Si (001) at 700°C, which is a significantly reduced growth temperature from that of typical YMnO3 films (850°C). The Bi modification was effective for the low temperature processing of YBM films. These highly c-axis oriented YBM films was obtained only at high ambient oxygen pressures, for example above 100 mTorr, contrary to YMnO3 films which requires low ambient oxygen pressure for the growth of c-axis preferred orientation. The dielectric constant and dissipation factor was 29 and 0.017 at 1 MHz, respectively. The memory window due to ferroelectric polarization switching was found in a capacitance-voltage (C-V) characteristic. The YBM/Y2O3/Si structure with above characteristics of YBM films exhibited the C-V memory window of 1.2 V at a sweep voltage of 5 V. The flat-band voltage shifted symmetrically with increasing the sweep voltage up to 8 V due to little charge injection from Si. As a result, the memory window increased progressively with increasing the sweep voltage and amounted to 2 V at a sweep voltage of 8 V. The leakage current density was below 5 × 10?7 A/cm2 at a bias voltage of 8 V.  相似文献   

9.
The objective of this work is to lower the sintering temperature of Ba0.91Ca0.09Ti0.916Sn0.084O3 (BCTS) ceramics without sacrificing the piezoelectric performance. The low-temperature sintering technique has been conducted to prepare the BCTS ceramics by adding two additives of ZnO and MnO2. The ceramics endure a phase transition from a ferroelectric tetragonal phase to a pseudo-cubic relaxor ferroelectric with increasing MnO2 content. The addition of ZnO and MnO2 decreases the sintering temperature greatly, positively affecting their dielectric and piezoelectric properties. An enhanced electrical behavior of d 33?~?495 pC/N, k p?~?43.0 %, ε r?~?5429, and tan δ?~?1.54 % has been observed in the ceramic with x?=?0.1 wt% when sintered at ~1315 °C. As a result, the method to dope two additives of ZnO and MnO2 can effectively improve the piezoelectric properties of BaTiO3-based ceramics sintered at a low temperature.  相似文献   

10.
Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.92(Ba0.8Sr0.2)0.08 TiO3+x mol% La2O3(x = 0, 0.1, 0.3, 0.5, 0.8) were synthesized by conventional solid state reaction. The crystal structure of all compositions is mono-perovskite ascertained by XRD. The grain size decreased and diffuse phase transition behavior was more evident with the increasing amount of La2O3. The piezoelectric constant d33 and the electromechanical coupling factor kp showed the maximum value of 165 pC/N and 0.322 at 0.3% and 0.1% La2O3 addition, respectively, and rapidly decreased when La2O3 addition over 0.5%. The loss tangent tanδ linearly increased and the mechanical quality factor Qm linearly decreased with the increasing amount of La2O3.  相似文献   

11.
In this paper, measurements of the nonlinear ferroelectric, piezoelectric and dielectric properties of Pb9Ce2Ti12O36 (Pb9CTO) and Ba2NdTi2Nb3O15 (BNTN) ferroelectric ceramics are presented. Hysteresis P(E) loops were measured as a function of applied electric field, frequency and temperature. The coercive field (E c) and remnant polarization (P r) displayed temperature and frequency dependence. Lead-free BNTN ceramics exhibited a coercive field E c?>?2.4 kV mm?1 and a piezoelectric coefficient d 33?=?2 pC N?1. The hysteresis loop was pinched above 110°C and a linear response was observed at 155°C, typical of a paraelectric material. Pb9CTO was shown to be ferroelectric with coercive field E c?=?1.2 kV mm?1 and a d 33?=?65 pC N?1. The frequency dependences of the impedance of the Pb9CTO discs were analyzed.  相似文献   

12.
Abstract

In this paper, we studied the effect of Cr2O3 doping (0–0.8?wt%) on the phase formation, dielectric, ferroelectric and magnetic properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCTZ) ceramics prepared by the solid state combustion method. All samples were prepared with a calcined and sintered temperature of 1050?°C and 1450?°C, respectively, for 2?h. The results of the XRD patterns showed the coexistence between the tetragonal (T) and orthorhombic (O) phases for all samples, and the tetragonal phase increased with increasing amounts of Cr2O3. The dielectric constant decreased when Cr2O3 increased. The P-E hysteresis loops of the BCTZ ceramics doped with Cr2O3 between 0 and 0.2?wt% showed slim and saturated loops. By increasing Cr2O3 doping from 0.4 to 0.8?wt%, the P-E loops were unsaturated and a leakage current was produced. The undoped BCTZ ceramics exhibited diamagnetic behavior. The sample with 0.2?wt% Cr2O3 showed ferromagnetic behavior. Increasing Cr2O3 doping from 0.4 to 0.8?wt%, caused the ceramics to exhibit paramagnetic behavior. Doping with Cr2O3 led to improper ratios between the tetragonal and orthorhombic phases, decreased density and increased porosity which caused a decrease in the electric properties.  相似文献   

13.
[Bi1-z(Na1-x-y-zKxLiy)]0.5BazTiO3 lead-free piezoelectric ceramics were fabricated by ordinary ceramic technique and the piezoelectric and ferroelectric properties of the ceramics were studied. The ceramics can be well sintered at 1,100–1,150 °C for 2 h. X-ray diffraction (XRD) analysis shows that K+, Li+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a single-phase perovskite structure. The introduction of K+, Li+ and Ba2+ into Bi0.5Na0.5TiO3 significantly decreases the coercive field E c but maintains the large remanent polarization P r of the materials. The ceramics provide piezoelectric constant d 33 of 205 pC/N, electromechanical coupling factor k p of 0.346, remanent polarization P r of 31.7–38.5 μC/cm2, and coercive field E c of 3.18–5.16 kV/mm.  相似文献   

14.
In this paper, lead-free (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBiAlO3 (BNBT-BA, x?=?0, 0.010, 0.015, 0.020, 0.025, and 0.030) piezoelectric ceramics were synthesized using a conventional solid-state reaction method. The effect of BiAlO3 concentration on dielectric, ferroelectric and piezoelectric properties were investigated. The ferroelectric and piezoelectric properties of BNBT ceramics are significantly influenced by the presence of BA. In the composition range studied, X-ray diffraction revealed a perovskite phase with the coexistence of rhombohedral and tetragonal phases. The temperature dependence of dielectric properties showed that the depolarization temperature (T d) shifted towards lower temperatures and that the degree of diffuseness of the phase transition around T d and T m became more obvious with increasing BiAlO3 content. The remanent polarization increased with increasing BA, and reached a maximum value of 30 μC/cm2 at x?=?0.020. As a result, at x?=?0.020, the piezoelectric constant (d 33) and the electromechanical coupling factor (k p) of the ceramics attained maximum values of 188 pC/N and 34.4 %, respectively. These results indicate that BNBT-BA ceramics is a promising candidate for lead-free piezoelectric materials.  相似文献   

15.
Our paper reports the influence of Mn doping on structural, magnetic and electrical properties of Ba0.98Zn0.02Ti1-xMnxO3 ceramics (here x?=?0.04, 0.06, 0.08). Structural and magnetic properties are significantly modified by changing Mn ion concentration at Ti site. With the increase in Mn ion concentration (x?≥?0.04), structural phase transition occurs from tetragonal to hexagonal. Magnetization hysteresis loop is broaden and enhanced magnetization is observed with increase in Mn ion concentration. This enhanced magnetic effect is likely to originate from exchange interactions between different oxidation states of Mn ions. All compositions showed ferroelectric behavior. It clearly enumerates from our observations that magnetism especially ferromagnetism can be induced in the barium titanate ferroelectric ceramic with control of suitable substituents.  相似文献   

16.
Abstract

Lead-free piezoelectric composition ceramics of (1-x-y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yK0.5Na0.5NbO3; (1-x-y)BNT-xBKT-yKNN (with 0.18≤x?≤?0.26 and 0≤y?≤?0.07) were fabricated using the solid-state combustion method. The structure exhibited co-existing rhombohedral and tetragonal phases for all samples. Increasing of x and y contents, the average grain size decreased from 1.42?μm to 1.02?μm and 1.25?μm to 0.70?μm, respectively. The diffuseness exponent (γ) of the ceramics was between 1.817 and 1.939 for x composition and between 1.766 and 1.999 for y composition indicating that the (1-x-y)BNT-xBKT-yKNN solid solutions had diffuse phase transition behavior. The change in the P-E loops of the ceramics indicated that the long-range ferroelectric order of the samples was disturbed and turned to the polar nano-regions (PNRs) with increased x and y contents. The polarization hysteresis loop transformed from well saturated typical ferroelectric, to pinched, and then to the relaxor state with increased x and y content. The addition of BKT and KNN contents significantly enhances the field-induced strain in BNT ceramics. The largest Smax of 0.25% corresponded to a high-field effective d33* of 509?pm/V, which was found in the composition of 0.79BNT-0.20BKT-0.01KNN.  相似文献   

17.
Lead-free piezoelectric ceramics are strongly needed to replace the lead-based piezoelectric ceramics with increasing environmental concerns. Barium titanate (BaTiO3) systems are one of the most promising candidates due to excellent electrical properties. However, the sintering temperature for traditionally sintered BaTiO3 ceramics are about 1300°C, which restricts the applications of BaTiO3 ceramics. It is necessary to develop high piezoelectric properties of BaTiO3 based ceramics which are able to sinter at low temperature. The (Ba0.94Cax)Ti0.94Oδ-0.04LiF (x?=?0.00?~?0.05 mol) ceramics were synthesized by a conventional sintering method at 1050°C. All the samples show high relative densities over 90%. X-Ray Diffraction pattern indicated that the crystallographic structure of the samples (x?=?0.00 and 0.01 mol) are orthorhombic phase and changes to pseudocubic one with increasing Ca content to x?=?0.03 mol. Two-phases with orthorhombic and pseudocubic symmetries coexisted at x?=?0.02 mol, which contributes the excellent properties, in which the piezoelectric constant d 33?=?361 pC/N, the planar electromechanical coupling coefficient kp?=?41.2%, the Curie temperature Tc?=?70°C, the temperature of phase transition T O-PC?=?34°C near the room temperature, the relative permittivity ε r?=?4028 and the remanent polarization P r?=?9.39 μC/cm2.  相似文献   

18.
Charged defects were found to have a significant influence over the microwave properties of Ba0.05Sr0.95TiO3 thin films.  相似文献   

19.
Heteroepitaxial Ba0.7Sr0.3TiO3 thin films were grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) (LSAT) and SrTiO3 (001) (STO) single crystal substrates using pulsed laser deposition (PLD). X-ray diffraction characterization revealed a good crystallinity and a pure perovskite structure for films grown on both LSAT and STO substrates. The in-plane ferroelectric and dielectric properties of the films were studied using interdigital electrodes (IDE). The film grown on LSAT substrate exhibited an enhanced in-plane ferroelectricity, including a well-defined P-E hysteresis loop with the remnant polarization P r = 10.5 μC/cm2 and a butterfly-shaped C-V curve. Nevertheless, only a slim hysteresis loop was observed in the film grown on STO substrate. Curie temperature T c of the film grown on LSAT substrate was found to be ∼105C, which is nearly 70C higher than that of the bulk Ba0.7Sr0.3TiO3 ceramics. T c of the film grown on STO substrate has almost no change compared to the bulk Ba0.7Sr0.3TiO3 ceramics. The dielectric tunabilities were found to be 64% and 52% at 1 MHz for the films grown on LSAT and STO substrates, respectively.  相似文献   

20.
ABSTRACT

In this paper, we prepare silver nanowires circuit graphics by UV-curing technology. The optimal condition of preparation of the silver nanowires circuit graphics are examined. Experiment results show that the UV-curing technology is a kind of individual, low-cost and environment-friendly method to prepare silver nanowires circuit graphics. The main influence factors on the lines' width are the UV beam power and scanning speed. And we also study the influence of the hot pressing temperature on the resistivity of the circuit graphics. In the experiments, the optimal condition is that the UV beam power is 190 mW and the scanning rate is 6 cm/s, then we get the minimum line width, which is 0.25 mm. The thickness of silver nanowires layer is 100 µm and the hot pressing temperature is 100°C, we will get the sample whose resistivity is 21× 10?5 Ω·cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号