首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we are concerned with a cascade of ODE‐wave systems with the control actuator‐matched disturbance at the boundary of the wave equation. We use the sliding mode control (SMC) technique and the active disturbance rejection control method to overcome the disturbance, respectively. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of solution for the closed‐loop via SMC are proved, and the monotonicity of the ‘reaching condition’ is presented without the differentiation of the sliding mode function, for which it may not always exist for the weak solution of the closed‐loop system. Considering that the SMC usually requires the large control gain and may exhibit chattering behavior, we then develop an active disturbance rejection control to attenuate the disturbance. The disturbance is canceled in the feedback loop. The closed‐loop systems with constant high gain and time‐varying high gain are shown respectively to be practically stable and asymptotically stable. Then we continue to consider output feedback stabilization for this coupled ODE‐wave system, and we design a variable structure unknown input‐type state observer that is shown to be exponentially convergent. The disturbance is estimated through the extended state observer and then canceled in the feedback loop by its approximated value. These enable us to design an observer‐based output feedback stabilizing control to this uncertain coupled system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We consider stabilisation for a linear ordinary differential equation system with input dynamics governed by a heat equation, subject to boundary control matched disturbance. The active disturbance rejection control approach is applied to estimate, in real time, the disturbance with both constant high gain and time-varying high gain. The disturbance is cancelled in the feedback loop. The closed-loop systems with constant high gain and time-varying high gain are shown, respectively, to be practically stable and asymptotically stable.  相似文献   

3.
In this paper, we are concerned with the boundary stabilization of a one‐dimensional anti‐stable Schrödinger equation subject to boundary control matched disturbance. We apply both the sliding mode control (SMC) and the active disturbance rejection control (ADRC) to deal with the disturbance. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of the solution for the closed‐loop system is proved and the ‘reaching condition’ is obtained. Considering the SMC usually requires the large control gain and may exhibit chattering behavior, we develop the ADRC to attenuate the disturbance for which the derivative is also supposed to be bounded. Compared with the SMC, the advantage of the ADRC is not only using the continuous control but also giving an online estimation of the disturbance. It is shown that the resulting closed‐loop system can reach any arbitrary given vicinity of zero as time goes to infinity and high gain tuning parameter goes to zero. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we consider output feedback stabilisation for a wave PDE-ODE system with Dirichlet boundary interconnection and external disturbance flowing the control end. We first design a variable structure unknown input type state observer which is shown to be exponentially convergent. Then, we estimate the disturbance in terms of the estimated state, an idea from active disturbance rejection control. These enable us to design an observer-based output feedback stabilising control to this uncertain PDE-ODE system.  相似文献   

5.
本文讨论边界具有内部不确定和外部扰动的非线性sine-Gordon方程的镇定问题. 为处理sine-Gordon方程中的非线性项, 文章给出一个新的总扰动观测器在线估计未知扰动, 并通过自抗扰控制方法, 设计一个控制器使得在反馈控制中实时补偿(消除)总扰动. 闭环系统被证明适定的并且受控系统是指数稳定而扰动观测器是有界的. 数值模拟说明提出方法的有效性.  相似文献   

6.
本文讨论边界具有外部扰动和区域内具有反阻尼的一维波动方程的的镇定问题. 主要的方法是后退反演变换和自抗扰控制方法. 即通过扩张状态观测器将扰动在线估计并在反馈控制中实时消除. 本文在扩张状态观测器中使用了两种增益调整策略——常数高增益与时变增益. 为避免常数高增益带来的峰值问题, 在控制环节中使用了饱和方法. 时变的增益可以在很大程度上减少扩张状态观测器中由于常数高增益引起的峰值问题同时可以达到完全消除干扰的镇定效果.  相似文献   

7.
本文研究了一类具有边界控制匹配非线性干扰的反稳定波动方程的镇定问题. 本文只用了两个量测, 构造了一个无限维干扰估计器来实时估计状态和总干扰, 该估计器既不要求干扰的导数有界, 也不需要高增益. 基于估计的总干扰和估计的状态, 本文设计了输出反馈控制律稳定原系统. 此外, 本文还证明了闭环系统的其他状态是有界的. 为了说明理论结果, 下文给出了一些数值模拟.  相似文献   

8.
本文针对量化输入和有界扰动下柔性臂系统的振动抑制和边界滑模控制器设计问题开展研究. 柔性臂的动态特性由偏微分方程表示的分布参数模型描述. 对于具有未知有界干扰的柔性臂系统, 其主要控制目标是减小干扰的影响, 使柔性臂到达期望角度并同时抑制系统的振动. 首先, 利用边界输出信号构造滑模函数和滑模面. 其次, 结合所构造的滑模面, 设计一种边界滑模控制器, 并利用算子半群理论证明了闭环系统的适定性. 所提出的边界滑模控制策略保证了系统状态能够在有限时间内到达滑模面, 并且系统状态在滑模面上是指数收敛的. 最后, 通过物理实验验证了所提出控制策略的有效性.  相似文献   

9.
ABSTRACT

In this paper, we apply the active disturbance rejection control, an emerging control technology, to output-feedback stabilisation for a class of uncertain multi-input multi-output nonlinear systems with vast stochastic uncertainties. Two types of extended state observers (ESO) are designed to estimate both unmeasured states and stochastic total disturbance which includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance without requiring the statistical characteristics, uncertain nonlinear interactions between subsystems, and uncertainties caused by the deviation of control parameters from their nominal values. The estimations decouple approximately the system after cancelling stochastic total disturbance in the feedback loop. As a result, we are able to design an ESO-based stabilising output-feedback and prove the practical mean square stability for the closed-loop system with constant gain ESO and the asymptotic mean square stability with time-varying gain ESO, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output-feedback control scheme.  相似文献   

10.
This paper is concerned with the parameter estimation and stabilization of a one‐dimensional wave equation with harmonic disturbance suffered by boundary observation at one end and the non‐collocated control at the other end. An adaptive observer is designed in terms of measured velocity corrupted by harmonic disturbance with unknown magnitude. The backstepping method for infinite‐dimensional system is adopted in the design of the feedback law. It is shown that the resulting closed‐loop system is asymptotically stable. Meanwhile, the estimated parameter is shown to be convergent to the unknown parameter as time goes to infinity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
《Automatica》2014,50(12):3164-3172
We consider boundary output feedback stabilization for an unstable wave equation with boundary observation subject to a general disturbance. We adopt for the first time the active disturbance rejection control approach to stabilization for a system described by the partial differential equation with corrupted output feedback. By the approach, the disturbance is first estimated by a relatively independent estimator; it is then canceled in the feedback loop. As a result, the control law can be designed almost as that for the system without disturbance. We show that with a time varying gain properly designed, the observer driven by the disturbance estimator is convergent, and that all subsystems in the closed-loop are asymptotically stable in the energy state space. We also provide numerical simulations which demonstrate the convergence results and underline the effect of the time varying gain estimator on peaking value reduction.  相似文献   

12.
滑模控制和自抗扰控制的研究进展   总被引:4,自引:0,他引:4  
本文概括了滑模控制和自抗扰控制的研究进展,进一步给出了复合控制的思想.滑模控制和自抗扰控制都有它们各自的优点,但是也都有它们各自的局限,例如:滑模控制中的抖振问题和自抗扰控制中的估计能力受限问题.复合控制结合了滑模控制和自抗扰控制的优点,并能提高闭环系统的性能.  相似文献   

13.
14.
针对一般航天器动力学姿态控制问题, 提出了一种二阶线性自抗扰控制方法. 该控制方法对航天器系统中存在的不确定性及外界干扰具有很强的抑制能力, 且具有比较简单的结构, 解决了传统控制方法过多依赖航天器精确模型的问题. 在此基础上对航天器进行指令跟踪、抗扰性及性能鲁棒性实验, 并与带趋近律的滑模控制进行比较.仿真结果表明, 在参数不确定和外界干扰影响下, 自抗扰控制方法能获得良好的动态性能、抗扰性和较强的性能鲁棒性.  相似文献   

15.
This paper addresses the Mittag‐Leffler stabilization for an unstable time‐fractional anomalous diffusion equation with boundary control subject to the control matched disturbance. The active disturbance rejection control (ADRC) approach is adopted for developing the control law. A state‐feedback scheme is designed to estimate the disturbance by constructing two auxiliary systems: One is to separate the disturbance from the original system to a Mittag‐Leffler stable system and the other is to estimate the disturbance finally. The proposed control law compensates the disturbance using its estimation and stabilizes system asymptotically. The closed‐loop system is shown to be Mittag‐Leffler stable and the constructed auxiliary systems in the closed loop are proved to be bounded. This is the first time for ADRC to be applied to a system described by the fractional partial differential system without using the high gain.  相似文献   

16.
In this paper, we are concerned with the output feedback control design for a system (plant) described by a boundary controlled anti‐stable one‐dimensional Schrödinger equation. Our output measure signals are the displacements at both side. An untraditional infinite‐dimensional disturbance estimator is developed to estimate the disturbance. Based on the estimator, we propose a state observer that is exponentially convergent to the original system and then design a stabilizing control law consisting of two parts: The first part is to compensate the disturbance by using its approximated value and the second part is to stabilize the observer system by applying the classical backstepping approach. The resulting closed‐loop system is shown to be exponentially stable with guaranteeing that all internal systems are uniformly bounded. An effective output‐based disturbance rejection control algorithm is concluded. An application, namely, a cascade of ODE–wave systems, is investigated by the developed control algorithm. Numerical experiments are carried out to illustrate the effectiveness of the proposed control law. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the problem of practical stabilization for linear systems subject to actuator saturation and input additive disturbance. Attention is restricted to systems with two anti‐stable modes. For such a system, a family of linear feedback laws is constructed that achieves semi‐global practical stabilization on the asymptotically null controllable region. This is in the sense that, for any set χ0 in the interior of the asymptotically null controllable region, any (arbitrarily small) set χ containing the origin in its interior, and any (arbitrarily large) bound on the disturbance, there is a feedback law from the family such that any trajectory of the closed‐loop system enters and remains in the set χ in a finite time as long as it starts from the set χ0. In proving the main results, the continuity and monotonicity of the domain of attraction for a class of second‐order systems are revealed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
针对欠驱动RTAC(rotational/translational actuator)的镇定问题,提出了一种滑模自抗扰控制方法,通过对总扰动的观测和补偿降低了未知扰动对RTAC的影响.为克服RTAC的欠驱动特性,所提方法通过将可驱动的摆球角度和无驱动的小车位置两个状态相结合,构建出虚拟被控量作为系统输出,从而使RTA...  相似文献   

19.
本文针对系统中存在的关节摩擦、动力学参数不确定性和外部负载干扰等因素引起的柔性机械臂系统控制性能下降的问题,提出了一种基于扰动和摩擦补偿的非奇异快速终端滑模控制方法(NFTSMC-DE-FC).首先,设计扰动估计器(DE)对系统未知动态参数和负载干扰进行估计.然后,针对扰动估计器不能精确估计的关节摩擦力矩进行辨识.最后,利用滑模控制技术设计非奇异快速终端滑模控制器,并将扰动估计值和摩擦力辨识值以前馈的方式进行补偿,实现对柔性机械臂系统给定参考轨迹跟踪的准确性以及对外界扰动的鲁棒性.值得注意的是,与传统只使用扰动估计器的方法相比,本文考虑到了摩擦力等非线性因素的影响,并利用辨识技术对摩擦力进行辨识,提高了控制精度.利用Lyapunov稳定性定理从理论上证明了所设计的控制器可以保证闭环系统的稳定性.实验结果表明,相较于非奇异快速终端滑模控制方法(NFTSMC)和基于扰动估计器的非奇异快速终端滑模控制方法(NFTSMC-DE),所提方法提高了柔性机械臂系统的轨迹跟踪性能.  相似文献   

20.
In this paper, boundary and distributed controllers are proposed to reduce the vibration of a flexible string with external disturbance. To accurately represent the flexible string's behaviour, partial differential equations are introduced for the flexible string modelling. Boundary and distributed disturbance observers, which are proved exponentially stable, are designed to compensate unknown disturbance. Based on the proposed disturbance observers, the boundary and distributed controllers are developed by linear matrix inequality and the asymptotic stability of the system with controllers is demonstrated by Lyapunov's direct method. Extensive numerical simulations are presented to validate the good performance of the proposed control laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号