首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water–binder (w/b) ratio and PET–binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.  相似文献   

2.
Journal of Material Cycles and Waste Management - This paper studies the use of wastepaper sludge ash (WPSA) for structural concrete in binary and ternary mixes with high-strength cement and two...  相似文献   

3.
Journal of Material Cycles and Waste Management - Enormous generation of construction and demolition (C&D) waste along with municipal solid waste (MSW) is required to managed properly for...  相似文献   

4.
Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long term effects of the presence of contaminants in solidified waste is examined by numerically simulating cement hydration after precipitation of metal salts on the surface of cement grains. A cement hydration model was extended in order to describe pore water composition and the effects of cement grain coating. Calculations were made and the strength development predicted by the model was found to agree qualitatively with experimental results found in literature. The complete model is useful in predicting the strength and leaching resistance of solidified products and developing solidification recipes based on cement.  相似文献   

5.
For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in the presence of rubber particles because the Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that on the hydrated cement particles. Thus, the compressive strength of Rubcrete could be improved by increasing the Hamaker constant of the system. This was achieved by increasing the refractive indices of the solids (n(s)). The refractive indices of materials increase with increases in functional groups, such as OH and SH on the surface. The model provided a possible mechanism for the efficacy of treating rubber particles with NaOH in improving the compressive strength. By using NaOH solution treatment, an oxygen-containing OH group was formed on the rubber surface to increase the Hamaker constant of the system, leading to higher compressive strength. Based on this mechanism, a novel method for modification of the rubber particles was also proposed. In this process, the rubber particles were partially oxidized with hot air/steam in a fluidized bed reactor to produce the hydrophilic groups on the surface of the particles. Preliminary results obtained so far are promising in accordance with the theory.  相似文献   

6.
The anaerobic co-digestion of biomass waste, a promising process of reusing resources, is capable of improving methane production. However, the characteristics and composition of fermenting raw material negatively influence the efficiency of methane production. Optimization experiments were systematically performed in this study through anaerobic co-digestion with urea-ammoniated rice straw (UARS) and food waste (FW) as co-substrates. Anaerobic co-digestion of UARS and FW in biogas production under mesophilic conditions (35 °C) was investigated in a 1 L enclosed triangular flask with a total organic load of 6 g volatile solids (VS)/L. The optimal mixing ratio of UARS to FW was close to 1:3, and the methane yield increasing by 8.83% compared with the sole substrate. Furthermore, based on the optimization ratio, supplementation of cobalt (Co) and nickel (Ni) on co-digestion were significantly superior to that of a single element. Additionally, kinetic analysis indicated that trace element remarkably facilitated the reaction rate of co-digestion. Noteworthy, the addition of Co, Ni, and the combination of Co and Ni achieved very significant (p < 0.01) improvement of 6.45, 8.36, and 13.65%. Meanwhile, Ni was substantially promoted the removal rate of VS, enhanced the operational stability of co-digestion and increased the methane content significantly.  相似文献   

7.
Journal of Material Cycles and Waste Management - This paper investigates the potential application of red ceramic waste as supplementary cementitious materials in structural concrete as a strategy...  相似文献   

8.
An investigation of waste foundry sand in asphalt concrete mixtures.   总被引:1,自引:0,他引:1  
A laboratory study regarding the reuse of waste foundry sand in asphalt concrete production by replacing a certain portion of aggregate with WFS was undertaken. The results showed that replacement of 10% aggregates with waste foundry sand was found to be the most suitable for asphalt concrete mixtures. Furthermore, the chemical and physical properties of waste foundry sand were analysed in the laboratory to determine the potential effect on the environment. The results indicated that the investigated waste foundry sand did not significantly affect the environment around the deposition  相似文献   

9.
Field surveys were carried out to ascertain the reduction in the generation rate of municipal solid waste as a result of the use of food waste disposers (FWDs). The generation rate and characteristics of garbage and of the food waste ground by FWDs in households were investigated, and the effect of FWDs was discussed. In a medium-sized village, the amount of garbage collected per collection decreased from 251.2 kg to 114.7 kg as a result of FWD use. The unit loading of ground food waste was estimated to be 111 g/cap·day. In a small village, the amount of garbage collected weekly decreased from 175 kg to 112 kg. The average unit loading of ground food waste was measured and found to be 126 g/cap·day. The reduction rate of garbage varied from 25% to 39% monthly and the average reduction rate was 31% throughout the surveying period. Dramatic variations in the characteristics of the collected garbage were recognized: the ratio of food waste on a dry basis declined by more than half, the moisture content decreased to half or less, the combustible matter content increased approximately 1.7 times or more, and the lower heating value increased approximately 2.0 times or more compared to the case without FWD use.  相似文献   

10.
水泥工业不仅通过能源利用排放CO2,而且还是工业生产工艺过程中CO2的最大非能源利用排放源.分析了水泥工业的发展现状及其能源消耗状况,计算了水泥工业的CO2排放总量和分途径CO2排放量,介绍了水泥工业的废弃物利用和控制水泥工业CO2排放方面的一些具体技术,提出了一些针对水泥工业的CO2排放控制措施和新型富氧燃烧技术应用于水泥工业的设想.  相似文献   

11.
12.
In this study, the potential re-use of waste foundry sand in high-strength concrete production was investigated. The natural fine sand is replaced with waste foundry sand (0%, 5%, 10%, and 15%). The findings from a series of test program has shown reduction in compressive and tensile strengths, and the elasticity modulus which is directly related to waste foundry inclusion in concrete. Nevertheless the concrete with 10% waste foundry sand exhibits almost similar results to that of the control one. The slump and the workability of the fresh concrete decreases with the increase of the waste foundry sand ratio. Although the freezing and thawing significantly reduces the mechanical and physical properties of the concrete. The obtained results satisfies the acceptable limits set by the American Concrete Institute (ACI).  相似文献   

13.
Journal of Material Cycles and Waste Management - One-third of food produced results as food waste, with no organized and sustainable disposal, and ends up in landfills. Garden waste is yet another...  相似文献   

14.
Use of selected waste materials in concrete mixes   总被引:2,自引:0,他引:2  
A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.  相似文献   

15.
The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined.Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities.  相似文献   

16.
17.
Experience with the use of LCA-modelling (EASEWASTE) in waste management.   总被引:2,自引:0,他引:2  
Life-cycle assessment (LCA) models are becoming the principal decision support tools of waste management systems. This paper describes our experience with the use of EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies), a new computerized LCA-based model for integrated waste management. Our findings provide a quantitative understanding of waste management systems and may reveal consistent approaches to improve their environmental performances. EASEWASTE provides a versatile system modelling facility combined with a complete life-cycle impact assessment and in addition to the traditional impact categories addresses toxicity-related categories. New categories dealing with stored ecotoxicity and spoiled groundwater resources have been introduced. EASEWASTE has been applied in several studies, including full-scale assessments of waste management in Danish municipalities. These studies led to numerous modelling issues: the need of combining process-specific and input-specific emissions, the choice of a meaningful time horizon, the way of accounting for biological carbon emissions, the problem of stored ecotoxicity and aspects of crediting the waste management system with the savings inherent in avoided production of energy and materials. Interpretation of results showed that waste management systems can be designed in an environmentally sustainable manner where energy recovery processes lead to substantial avoidance of emissions and savings of resources.  相似文献   

18.
Journal of Material Cycles and Waste Management - The presence of cement paste is the most important factor affecting the quality of recycled concrete fine aggregates. This study aims to develop...  相似文献   

19.
混凝土仍将是21世纪一种应用最广泛的建筑材料,但越来越多的拆除建筑物会产生大量的废弃混凝土块,既带来环境污染,又造成资源浪费.搞好废旧混凝土的开发利用,具有明显的环境效益和经济效益.  相似文献   

20.
The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号