首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The magnetization, the electrical resistivity, the magnetoresistance, and the Hall resistivity of Ni50Mn35In15 ? x Si x (x = 1.0, 3.0, 4.0) Heusler alloys are studied at T = 80-320 K. The martensitic transformation in these alloys occurs at T = 220?C280 K from the high-temperature ferromagnetic austenite phase into the low-temperature martensite phase having a substantially lower magnetization. A method is proposed to determine the normal and anomalous Hall effect coefficients in the presence of magnetoresistance and a possible magnetization dependence of these coefficients. The resistivity of the alloys increases jumpwise during the martensitic transformation, reaches 150?C200 ??? cm, and is almost temperature-independent. The normal Hall effect coefficient is negative, is higher than that of nickel by an order of magnitude at T = 80 K, decreases monotonically with increasing temperature, approaches zero in austenite, and does not undergo sharp changes in the vicinity of the martensitic transformation. At x = 3, a normal Hall effect nonlinear in magnetization is detected in the immediate vicinity of the martensitic transformation. The temperature dependences of the anomalous Hall effect coefficient in both martensite and austenite and, especially, in the vicinity of the martensitic transformation cannot be described in terms of the skew scattering, the side jump, and the Karplus-Lutinger mechanisms from the anomalous Hall effect theory. The possible causes of this behavior of the magnetotransport properties in Heusler alloys are discussed.  相似文献   

2.
The Hall effect, transverse magnetoresistance, and magnetization of Ni48Co2Mn35In15 Heusler alloys have been studied at T = 77–300 K in magnetic fields up to 15 kOe. It has been shown that a martensitic transformation is accompanied by a change in the sign of the constant of the ordinary Hall effect, which means a strong change in the electronic spectrum in the martensitic transformation, while the anomalous Hall effect (AHE) constant is positive in both the austenite and martensite phases. In both phases, there are no correlations between the AHE constant and the square of the resistivity, which are characteristic of the side jump mechanism in the AHE theory. In the near vicinity of the martensitic transformation, the field dependences of the Hall resistance are complex and nonmonotonic, indicating a change in the relative concentrations of the austenite and martensite phases in strong fields.  相似文献   

3.
Martensitic transformations and magnetic properties of Ni89-x Mn x In11 (42 ≤ x ≤ 44) alloys have been investigated. Critical temperatures of magnetic and structural phase transitions in the studied alloy system have been determined. It has been shown that the martensitic transformation induced by the magnetic field is observed in all alloys. Temperature dependences of the spontaneous magnetization of austenite and martensite as well as the magnitude of the critical field, in which martensitic transformation occurs, have been determined.  相似文献   

4.
The ferromagnetic shape memory alloy with nominal composition of Ni52.5Mn24.5Ga23(at%) was developed by the melt-spinning technique. The as-spun ribbon showed dominant L21 austenitic (cubic) structure with splitting of primary peak in the X-ray diffractogram indicating existence of a martensitic feature. The quenched-in martensitic plates were revealed from Transmission electron microscopy (TEM). Increase of magnetisation at low-temperature rise indicates martensite to austenite transformation and its reverse with a drop in magnetisation during cooling cycle. The martensite to austenite transformation can be made spontaneous at higher magnetic field.  相似文献   

5.
We report on FMR experiments performed for the first time on thin Ni-Mn-Ga films clamped to the mica substrates and then fully released from them. The aim is to evaluate the role of magnetoelastic coupling in stressed Ni-Mn-Ga Heusler alloy films that undergo martensitic transformation. The experimental results show that the difference in the effective magnetization 4π(Meff tubes-Meff films) is negligible in the austenite phase and it increases to about 1–1.5 kG at temperatures well below the martensitic transformation. The data suggests that magnetoelastic coupling in the martensite phase of Ni-Mn-Ga thin films is typical of normal thin magnetic films with magnetostriction of about 50 ppm.  相似文献   

6.
吕兆承  李广 《物理学报》2009,58(4):2746-2751
研究了预先热磁处理对Ni503Mn287Ga21单晶的磁学和力学性能的影响.首先将样品加热到居里温度之上让其冷却,冷却方式分为两种:一种是施加一定大小的磁场从高于居里温度冷却至室温,另一种是在样品经历顺磁-铁磁相变后但还未发生奥氏体-马氏体相变前施加相同大小和方向的磁场并冷却至室温.室温时的拉伸-压缩实验结果表明单晶样品在经历前一种处理后,其可逆应变、磁化强度的变化 (ΔM)比后一种处理的相应值要小很多.在后一种热磁处理的样品中,顺磁-铁磁相变发生后形成了自发磁畴,但这种磁畴不具有择优取向.在顺磁-铁磁相变结束后施加磁场,容易导致择优的马氏体准单畴出现,从而表现出大的可逆应变和ΔM.但对于前者,我们认为样品从居里温度降到室温过程中,其中的磁畴在相同的磁场作用下获得择优生长,形成大磁畴,导致磁诱导的强各向异性.这种择优取向的大磁畴在随后马氏体相变期间影响着马氏体的自发排列方式,不利于马氏体准单畴的出现,结果导致较小的可逆应变和ΔM. 关键词: 磁和力学锻炼 Ni-Mn-Ga单晶 铁磁和马氏体相变  相似文献   

7.
李盼盼  王敬民  蒋成保 《中国物理 B》2011,20(2):28104-028104
This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-xCuxMn31Ga19 (x=2--10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.  相似文献   

8.
Changes in 3d states occupancy associated with order–disorder transition and martensitic transformation in a Cu–Al–Be alloy was investigated by electron energy loss spectroscopy (EELS) in both high energy and low energy loss regions. From the high energy loss region, the Cu L2,3 white-line intensities, which reflect the unoccupied density of states in 3d bands, was measured for three states of the alloy: disordered austenite, ordered austenite and martensite. It was found that the white-line intensity remains the same during order–disorder transition but appears slightly smaller in martensite, indicating that some electrons left Cu 3d bands or some hybridization took place during phase transformation. From the low energy loss region, the optical joint density of states (OJDS) was obtained by Kramers–Kronig analysis. As maxima observed in the OJDS spectra are assigned to interband transitions, these spectra can be used to probe changes in the electronic band structure. The analysis shows that during the martensitic transformation, the peaks positions and relative intensities in the OJDS spectra undergoes noticeable changes, which are associated with interband transitions.  相似文献   

9.
This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni-Fe-Ga alloys by using optical metallographic microscope and differential scanning calorimetry (DSC) methods. The structure type of Ni55.5Fe18Ga26.5-xSix alloys is determined by x-ray diffraction (XRD), and the XRD patterns show the microstructure of Ni-Fe-Ga-Si alloys transformed from body-centred tetragonal martensite (with Si content x = 0) to body-centred cubic austenite (with x = 2) at room temperature. The martensitic transformation temperatures of the Ni55.5Fe18Ga26.5-xSix alloys decrease almost linearly with increasing Si content in the Si content range of x ≤ 3. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni-Fe-Ga-Si alloy. The valence electronic concentrations, size factor, L21 degree of order and strength of parent phase influence the martensitic transformation temperatures of the Ni-Fe-Ga-Si alloys. An understanding of the relationship between martensitic transformation temperatures and Si content will be significant for designing an appropriate Ni-Fe-Ga-Si alloy for a specific application at a given temperature.  相似文献   

10.
The magnetic and thermoelastic martensitic transformations and physical properties (magnetization, electrical resistivity, thermoelectric power, relative elongation, and thermal expansion coefficient) of multicomponent magnetic shape memory alloys Ni50 ? x Co x Mn29Ga21 (x = 0, 1, 2, 3, 10 at %) have been investigated. The critical temperatures of thermoelastic martensitic transformation and magnetic transitions have been determined. It has been found that the alloy with 10 at % Co undergoes a martensitic transformation in the temperature range of 6–10 K.  相似文献   

11.
The structures, the martensitic transformations, and the magnetic properties are studied systematically in Mn50Ni40-xCuxIn10, Mn50-xCuxNi40In10, and Mn50Ni40In10-xCux alloys. The partial substitution of Ni by Cu reduces the martensitic transformation temperature, but has little influence on the Curie temperature of austenite. Comparatively, the martensitic transformation temperature increases and the Curie temperature of austenite decreases with the partial replacement of Mn or In by Cu. The magnetization difference between the austenite phase and the martensite phase reaches 70 emu/g in Mn50Ni39Cu1In10; a field-induced martensite-to-austenite transition is observed in this alloy.  相似文献   

12.
The evolution of the martensitic twin microstructure in In77.5Tl22.5 single crystals was investigated by atomic force microscopy. During the reverse martensitic transformation the twins gradually flatten to disappear completely at the austenite finish temperature. The experimentally determined temperature dependence of the height of the twin profile agrees with the theoretical predictions of Barsch and Krumhansl.  相似文献   

13.
Cu对Ni50Mn36In14相变和磁性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
柳祝红  伊比  李歌天  马星桥 《物理学报》2012,61(10):108104-108104
文章研究了Cu替代部分Ni对铁磁性形状记忆合金Ni50Mn36In14相变和磁性的影响规律. 研究表明,在Ni50-xCuxMn36In14中,随着Cu含量的增加,相变温度逐渐降低. Cu含量低于5%时,奥氏体的磁性强于马氏体的磁性, 母相和马氏体相的饱和磁化强度的差值ΔM随着Cu含量的增加而增大. 当Cu含量x=4.5时, ΔM迅速增加到80 emu/g, 并在该材料中观察到了磁场驱动的马氏体到奥氏体的转变,显示了该材料作为磁驱动磁电阻材料的潜在应用前景.当Cu含量高于5%时,奥氏体保持铁磁状态, 马氏体相由反铁磁状态变为铁磁状态,马氏体的磁性强于奥氏体的磁性, ΔM大大削弱,磁场驱动性质消失.  相似文献   

14.
成功生长了Co50Ni21Ga29:Si(x=1,2)单晶样品,对其磁性,马氏体相变及其相关性质进行了细致的测量.发现掺Si成分的单晶具有非常迅速的马氏体相变行为、2.5%的大相变应变、大于100 ppm的磁感生应变和4.5%的相变电阻.进一步研究指出,在CoNiGa合金中掺入适量Si元素,能够降低材料的马氏体相变温度,减小相变热滞后,提高材料的居里温度,并使得磁性原子的磁矩有所降低.尤其重要的是Si元素的添加能够增大材料马氏体的磁晶各向异性能,改善马氏体变体的迁移特性,从而获得更大的磁感生应变. 关键词: 铁磁形状记忆合金 Heusler合金 50Ni21Ga29Six')" href="#">Co50Ni21Ga29Six  相似文献   

15.
Results are reported on the temperature dependence of resistivity (200≤T≤360 K) and low-field magnetization (5≤T≤350 K) for the off-stoichiometric Ni49Mn29Ga22 single crystal. Measurements are made for both heating and cooling cycles. The resistivity data show two first-order (hysteretic) transformations centered at about 340 and 250 K. The magnetization data show the same two transformations as the resistivity data as well as a third centered at 285 K. The results are consistent with a martensite/austenite transformation near 340 K and two intermartensitic transformations centered at 285 and 250 K (three martensite phases).  相似文献   

16.
Heat of formation, elastic property and electronic structure of TiNiPd high-temperature shape memory alloys have been investigated by first-principles calculations using the pseudopotentials plane-wave method. The results show that the heat of formation difference between austenite and martensite plays an important role in the martensitic transformation. The effect of Pd content on the martensitic transformation temperature and transformation type is clarified based on the elastic constants of the B2 phases. High martensitic transformation temperature can be attributed to a low shear resistance C′. Furthermore, the mechanism of the effect of Pd addition on elastic constants is explained on the basis of the electronic structure.  相似文献   

17.
An approach of near neighbour correlation, with manual intervention, was developed for reconstructing parent austenite microstructure in a martensitic stainless steel. This was validated in a ferrite-austenite dual structure. Two-hundred and twenty randomly selected austenite grains were reconstructed from the experimental EBSD (electron backscattered diffraction) measurements. From these reconstructions, martensite variant selection was quantified as the number of variants (nV) and the variant selection index (VSI: a statistical index for the relative area fractions of the variants). For each prior austenite grain, both nV and VSI appeared to depend on the associated transformation (austenite-martensite) strain. Selection of common variants between two neighbouring austenite grains was related to the presence of 60°<111?>?or Σ3 boundary in the austenite phase and corresponding minimisation of the transformation strain.  相似文献   

18.
Magneto-optical spectra of polycrystalline samples of the Fe48Mn24Ga28 Heusler alloy undergoing martensitic transformation from the high-temperature paramagnetic austenitic to ferromagnetic martensitic phase have been studied at 50–320 K in the transversal Kerr effect geometry. A comparison of magnetooptical spectra with data obtained in magnetic measurements has demonstrated that the martensitic transition on the surface of a sample and in its bulk takes place in the same temperature interval. Magnetic anisotropy has been found in the martensitic phase driven by large multidomain inclusions of martensite in austenite. The magneto-optical signal of Fe48Mn24Ga28 differs strongly in spectral shape from that measured in Ni-Mn-Ga.  相似文献   

19.
The investigation addresses the effect of Mn incorporation for Ni on the properties of a series of Ni77−xMnxGa23 (x=22-29; at%) ferromagnetic shape memory alloys prepared in the form of ribbons by a melt spinning technique. Phase transformation studies in these ribbons by differential scanning calorimetry revealed that austenitic start and martensitic start temperatures decreased with the increase in Mn content. The Curie temperature (TC) of these alloys determined from thermal variation of magnetisations was found to rise with increasing Mn content. The martensitic transformation temperatures were above TC in low Mn containing (x=22 and 23) alloys. Morphology observed through transmission electron microscopy manifested complex martensitic features in the alloy with x=22 while x=29 had an austenitic phase. The alloys with intermediate Mn content (x=24, 25) had overlapping magnetic and martensitic transformations close to room temperature. The thermal lag between austenitic and martensitic characteristic temperatures in these alloys has been corroborated to their structural state. X-ray diffraction indicated a predominant martensite phase and austenite phase in low and high Mn containing alloys respectively. In-situ diffraction studies during thermal cycle indicate martensite-austenite transformations.  相似文献   

20.
The electrical transport and thermal properties of the ferromagnetic shape memory alloy Ni49.4Mn30Ga20.6 are measured. Near around the starting point from austenite to martensite transition, the temperature (T) dependence of resistance for the sample shows a clear jump due to a great scattering mechanism introduced by the transformation resulting in many interfaces during the process. T-dependent curve of the thermoelectric power (S) of the sample shows linear dependence below martensitic transformation temperature with its absolute value decreasing during cooling. The absolute value of S   tends to reach at a maximum at the martensitic transformation which is reflected by ∂S/∂TS/T∼0. This may be related to the changes of the density of states near the phase transformation and the corresponding scattering introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号