首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
武亮  戚益军 《植物学报》2020,55(3):270-273
RNA是传递生命遗传信息的重要介质。依据RNA是否编码蛋白质, 可分为编码RNA和非编码RNA。作为非编码RNA的核心种类之一, 小RNA在各种生命活动中均发挥重要调控作用, 其产生及功能发挥依赖于不同的DCL、RDR和AGO蛋白。目前, 植物中功能和调控方式较为明确的是以21 nt为主的miRNA和24 nt siRNA, 其它长度和类型的小RNA由于积累水平通常较低, 尚知之甚少。近日, 南方科技大学郭红卫团队发现, 拟南芥(Arabidopsis thaliana)在缺氮等逆境胁迫下可产生大量依赖于DCL2和RDR6的22 nt siRNA。22 nt siRNA与AGO1结合形成效应复合物, 抑制硝酸还原酶基因(NIA1NIA2)等mRNA的翻译效率, 从而减少植物在营养缺失条件下的能量消耗。这意味着, 当植物遇到不利环境时, 虽然无法通过移动来逃避逆境, 但可通过诱导产生小RNA, 协调和平衡正常的生长发育与胁迫响应。  相似文献   

3.
In RNA interference (RNAi), short double-stranded RNA (known as siRNA) inhibits expression from homologous genes. Clinical or pre-clinical use of siRNAs is likely to require stabilizing modifications because of the prevalence of intracellular and extracellular nucleases. In order to examine the effect of modification on siRNA efficacy and stability, we developed a new method for synthesizing stereoregular boranophosphate siRNAs. This work demonstrates that boranophosphate siRNAs are consistently more effective than siRNAs with the widely used phosphorothioate modification. Furthermore, boranophosphate siRNAs are frequently more active than native siRNA if the center of the antisense strand is not modified. Boranophosphate modification also increases siRNA potency. The finding that boranophosphate siRNAs are at least ten times more nuclease resistant than unmodified siRNAs may explain some of the positive effects of boranophosphate modification. The biochemical properties of boranophosphate siRNAs make them promising candidates for an RNAi-based therapeutic.  相似文献   

4.
The Piwi-interacting RNA interference pathway plays an important role in suppressing transposable elements in the Drosophila germline. Now, deep sequencing of short RNAs from somatic tissue and cell culture has identified a novel class of endogenous siRNAs that may have a similar role in the soma.  相似文献   

5.

The primordial RNA world is a hypothetical era prior to the appearance of protein and DNA, when RNA molecules were the sole building blocks for early forms of life on Earth. A critical concern with the RNA-world hypothesis is the instability of the cytosine nucleobase compared to the other three bases (adenine, guanine, and uracil). The author proposes that cytosine residues could have stably existed in the primordial world in the RNA i-motif, a four-stranded quadruplex structure formed by base-pairing of protonated and unprotonated cytosine residues under acidic conditions. The i-motif structure not only increases the lifetime of cytosine residues by slowing their deamination rate, but could also allow RNA polymers to bind to certain ligands (e.g., anions) to perform critical functions. Future studies focused on determining the rate of cytosine deamination in RNA i-motifs over a range of pH, temperature, and pressure conditions, and on interrogating the interactions between ligands and RNA i-motifs, could uncover new evidence of the origin of life on Earth.

  相似文献   

6.
The general notion of an “RNA World” is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA and genetically encoded proteins were not involved as catalysts. There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life. However, arguments regarding whether life on Earth began with RNA are more tenuous. It might be imagined that all of the components of RNA were available in some prebiotic pool, and that these components assembled into replicating, evolving polynucleotides without the prior existence of any evolved macromolecules. A thorough consideration of this “RNA-first” view of the origin of life must reconcile concerns regarding the intractable mixtures that are obtained in experiments designed to simulate the chemistry of the primitive Earth. Perhaps these concerns will eventually be resolved, and recent experimental findings provide some reason for optimism. However, the problem of the origin of the RNA World is far from being solved, and it is fruitful to consider the alternative possibility that RNA was preceded by some other replicating, evolving molecule, just as DNA and proteins were preceded by RNA.  相似文献   

7.
The Path from the RNA World   总被引:1,自引:0,他引:1  
We describe a sequential (step by step) Darwinian model for the evolution of life from the late stages of the RNA world through to the emergence of eukaryotes and prokaryotes. The starting point is our model, derived from current RNA activity, of the RNA world just prior to the advent of genetically-encoded protein synthesis. By focusing on the function of the protoribosome we develop a plausible model for the evolution of a protein-synthesizing ribosome from a high-fidelity RNA polymerase that incorporated triplets of oligonucleotides. With the standard assumption that during the evolution of enzymatic activity, catalysis is transferred from RNA → RNP → protein, the first proteins in the ``breakthrough organism' (the first to have encoded protein synthesis) would be nonspecific chaperone-like proteins rather than catalytic. Moreover, because some RNA molecules that pre-date protein synthesis under this model now occur as introns in some of the very earliest proteins, the model predicts these particular introns are older than the exons surrounding them, the ``introns-first' theory. Many features of the model for the genome organization in the final RNA world ribo-organism are more prevalent in the eukaryotic genome and we suggest that the prokaryotic genome organization (a single, circular genome with one center of replication) was derived from a ``eukaryotic-like' genome organization (a fragmented linear genome with multiple centers of replication). The steps from the proposed ribo-organism RNA genome → eukaryotic-like DNA genome → prokaryotic-like DNA genome are all relatively straightforward, whereas the transition prokaryotic-like genome → eukaryotic-like genome appears impossible under a Darwinian mechanism of evolution, given the assumption of the transition RNA → RNP → protein. A likely molecular mechanism, ``plasmid transfer,' is available for the origin of prokaryotic-type genomes from an eukaryotic-like architecture. Under this model prokaryotes are considered specialized and derived with reduced dependence on ssRNA biochemistry. A functional explanation is that prokaryote ancestors underwent selection for thermophily (high temperature) and/or for rapid reproduction (r selection) at least once in their history. Received: 14 January 1997 / Accepted: 19 May 1997  相似文献   

8.
Small RNAs have been recently discovered as important regulators of gene expression in Eukaryota. This review compares two categories of small RNAs existing in plants: short interfering RNAs (siRNAs) and microRNAs (miRNAs) and reveals similarities and differences between two intriguing processes: RNA degradation and translational repression directed by small RNAs. The disruption of miRNA-mediated regulation causes developmental abnormalities in plants, proving a fundamental role of miRNAs.  相似文献   

9.
10.
piRNA(Piwi-interacting RNA)是最近从哺乳动物睾丸组织中发现的一类能与PIWI蛋白质相互作用,且长度分布在26~31nt的新型小分子单链RNA,主要综述piRNA的相关研究进展.  相似文献   

11.
12.
13.
The RNA world hypothesis refers to a hypothetical era prior to coded peptide synthesis, where RNA was the major structural, genetic, and catalytic agent. Though it is a widely accepted scenario, a number of vexing difficulties remain. In this review we focus on a missing link of the RNA world hypothesis—primitive miniribozymes, in particular ligases, and discuss the role of these molecules in the evolution of RNA size and complexity. We argue that prebiotic conditions associated with freezing, rather than “warm and wet” conditions, could have been of key importance in the early RNA world.[Reviewing Editor: Dr. Niles Lehman]  相似文献   

14.
15.
The Fascinating World of RNA Interference   总被引:1,自引:0,他引:1       下载免费PDF全文
Micro- and short-interfering RNAs represent small RNA family that are recognized as critical regulatory species across the eukaryotes. Recent high-throughput sequencing have revealed two more hidden players of the cellular small RNA pool. Reported in mammals and Caenorhabditis elegans respectively, these new small RNAs are named piwi-interacting RNAs (piRNAs) and 21U-RNAs. Moreover, small RNAs including miRNAs have been identified in unicellular alga Chlamydomonas reinhardtii, redefining the earlier concept of multi-cellularity restricted presence of these molecules. The discovery of these species of small RNAs has allowed us to understand better the usage of genome and the number of genes present but also have complicated the situation in terms of biochemical attributes and functional genesis of these molecules. Nonetheless, these new pools of knowledge have opened up avenues for unraveling the finer details of the small RNA mediated pathways.  相似文献   

16.
17.
18.
This study aimed to establish if the Lower Río de la Plata Basin (LRPB) wetlands can be considered a biogeographic unit. The species of this area were compiled and segregated according to the habitat, selecting only 87 endemic taxa restricted to the LRPB and linked to wetlands. Distributional data of species obtained from the literature, web databases, biological collections, and field trips were georeferenced. The areas of endemism were established as those areas where the distribution of two or more taxa overlaps in groups of rivers’ sections with geographic continuity and were tested with a cluster analysis. This congruence is due to ecological, geomorphological, and historical factors. Four areas of endemism were found: a broad area that comprises the whole study area (Riverine district), which is divided into three nested smaller areas (Paraguay–Paraná Flooding Valleys, Uruguay Basin, and Paraná Delta subdistricts). Then, we analysed 170 taxa distributions to evaluate the relationship between the study area and the neighbouring biogeographic units. According to the results, the study area belongs to the Paraná biogeographic province. Some areas of endemism are hidden inside broader areas and are hardly detected with the currently used biogeographic grid-methods. We propose to combine the information about ecological requirements of each taxon with its georeferenced records to estimate their areas of distribution as a primary step for searching areas of endemism in intracontinental studies.  相似文献   

19.
20.
A main unsolved problem in the RNA World scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers obtained by random polymerization on mineral surfaces. A number of computational studies have shown that the structural repertoire yielded by that process is dominated by topologically simple structures, notably hairpin-like ones. A fraction of these could display RNA ligase activity and catalyze the assembly of larger, eventually functional RNA molecules retaining their previous modular structure: molecular complexity increases but template replication is absent. This allows us to build up a stepwise model of ligation-based, modular evolution that could pave the way to the emergence of a ribozyme with RNA replicase activity, step at which information-driven Darwinian evolution would be triggered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号