首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SHRIMP U-Pb zircon 207 Pb/206 Pb ages were obtained from two drill cores from the basement of the Ordos Basin.A garnet-sillimanite-biotite-plagioclase gneiss(QI1-1) from the western Ordos Basin basement yielded an average age of 2031 10 Ma.Based on the mineral assemblages,the source material of the gneiss is speculated to be pelitic-felsic system.A gneissic two-mica granite(Long1-1) from the eastern Ordos Basin basement yielded an average age of 2035 10 Ma.The zircons from both samples exhibit magmatic growth pattern.The shapes of the zircons suggest that the zircons should crystallize from a granitic of felsic volcanic terrain.The ages and the characters of zircons are consisitent with the other researches in the Ordos Basin and indicate that the basement of the Ordos Basin had experienced an intensive magmatic epsode during the late Paleoproterozoic period.The date from this study suggest the possible existences of a Paleoproterozoic mobile tectonic belt in the region.The reconstruction of such a belt is critical for understanding the tectonomagmatic evolution of the western block of the North China Craton.  相似文献   

2.
Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin   总被引:23,自引:0,他引:23  
Zircon LA-ICP MS U-Pb dating of six metamorphic rocks and a metagranite (breccia) from southern basement of the Songliao Basin are reported in order to constrain the formation ages of basement. The basement metamorphic rocks in the Songliao Basin mainly consist of metagabbro (L45-1), amphibolite (SN117), metarhyolitical tuff (G190), sericite (Ser) schist (N103), chlorite (Chl) schist (T5-1), biotite (Bi)-actinolite (Act)-quartz (Q) schist (Y205), and metagranite (L44-1). The cathodoluminesence (CL) images of the zircons from metagabbro (L45-1) and metagranite (L44-1) indicate that they have cores of magmatic origin and rims of metamorphic overgrowths. Their U-Pb isotopic ages are 1808±21 Ma and 1873±13 Ma, respectively. The zircons with oscillatory zoning from amphibolite (SN117) and Chl schist (T5-1), being similar to those of mafic igneous rocks, yield ages of 274 ± 3.4 Ma and 264 ± 3.2 Ma, re-spectively. The zircons from metarhyolitical tuff (G190) and Ser schist (N103) display typical magmatic growth zoning and yield ages of 424 ± 4.5 Ma and 287 ± 5.1Ma, respectively. Most of zircons from Bi-Act-Q schist (Y205) are round in shape and different in absorption degree in the CL images, implying their sedimentary detritals. U-Pb dating yield concordant ages of 427 ± 3.1Ma, 455 ± 12 Ma, 696 ± 13 Ma, 1384±62 Ma, 1649±36 Ma, 1778±18 Ma, 2450±9 Ma, 2579±10 Ma, 2793±4 Ma and 2953±14 Ma. The above-mentioned results indicate that the Precambrian crystalline basement (1808―1873 Ma) exists in the southern Songliao Basin and could be related to tectonic thrust, and that the Early Paleozoic (424―490 Ma) and Late Paleozoic magmatisms (264―292 Ma) also occur in the basin basement, which are consistent with the ages of the detrital zircons from Bi-Act-Q schist in the basement.  相似文献   

3.
Located in the east portion of the North Orogenic Belt, the Songliao Basin is bounded by the Da Hinggan Mountains in the west, the Xiao Hinggan Mountains in the north, the Zhangguangcai Range in the east, and the North China Craton (NCC) in the south (Fig…  相似文献   

4.
The Yematan batholith crops out over 120 km^2 in the North Qaidam ultrahigh pressure (UHP) metamorphic belt. It consists of granodiorite, monzogranite and biotite granite and forms an irregular intrusion into Neoproterozoic gneiss that has undergone Caledonian UHP metamorphism. Zircons from the Yematan granodiorite yield a SHRIMP U-Pb age of 397 3 Ma. These granitic rocks have geochemical characteristics intermediate between I- and S-type granites, and are post-collisional. We suggest that the Yematan granitic rocks were formed during the last exhumation event of the North Qaidam UHP belt.  相似文献   

5.
TTG gneiss is a common rock to outcrop in the northern part of the Dabie orogen, a few of which are closely associated with eclogites that experienced the Triassic ultrahigh pressure metamorphism. Although they were thermally metamorphosed by a large-scale magma activity in this region at the Early Cretaceous, it is unclear whether or not they are also affected by the Triassic metamorphism during continental subduction and exhumation. In order to resolve this issue, SHRIMP zircon U-Pb dating was carried out for the host gneiss of eclogites in North Dabie. The results show that cores from the gneiss have an age of 746~.31 Ma, consistent with the protolith ages of granitic gneisses in the Dabie orogen. Zircon overgrowing with different U and Th concentrations give concordant ages of 212~21 and 120~11 Ma, respectively. Th/U ratios of overgrown zircons are both lower than 0.1, suggesting a metamorphic genesis. The present resuits suggest that the gneiss in North Dabie has the similar protolith ages of Neoproterozoic to those granitic gneisses elsewhere in the Dabie orogen, and experienced not only the Triassic metamorphism but also the thermal metamorphism due to the Early Cretaceous magmatism. This provides an important insight into the geodynamic evolution of gneissic rocks in the Dabie orogen.  相似文献   

6.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   

7.
Miao  Laicheng  Fan  Weiming  Zhang  Fuqing  Liu  Dunyi  Jian  Ping  Shi  Guanghai  Tao  Hua  Shi  Yuruo 《科学通报(英文版)》2004,49(2):201-209
Located in the eastern portion of the Xing'an-Mongolian Orogenic Belt (XMOB), the Xinkailing-Kele complex has previously been considered to be Precambrian metamorphic rocks, mainly according to its relatively high metamorphic grade. Our filed observation, however, revealed that the complex is composed mainly of metamorphic rocks (Kele complex), tectono-schists ("Xinkailing Group"), and granitoids (Xinkailing granitic complex). Dating on these rocks using advanced SHRIMP zircon U-Pb technique indicates that: (1) Biotite-plagioclase gneiss from the Kele complex has a protolith age of 337±7 Ma (2σ) and a metamorphic age of 216±3 Ma (2σ); (2) the tectono-schist of the "Xinkailing Group" gave a magmatic age of 292±6 Ma (2σ), indicative of felsic volcanic protolith of the schist formed in late Paleozoic time; and (3) the Menluhedingzi and Lengchuan granites of the Xinkailing granitic complex were emplaced at 167±4 (2σ) and 164±4 Ma (2σ), respectively. These results suggest that the Xinkailing-Kele complex is not Precambrian metamorphic rocks and the so-called Precambrian "Nenji-ang Block" does essentially not exist. In combination with regional geological data, we propose that the Kele metamorphic complex is likely related to a collisional tectonism that took place in Triassic time, as indicted by its metamorphic age of 216±3 Ma. The Xinkailing granitic complex was em-placed along the collisional zone during Mid-Jurassic time, likely in a post-orogenic or anorogenic setting.  相似文献   

8.
A great deal of studies have recently devoted to the Central Asian orogenic belt (CAOB). Some of the studies have proposed that CAOB is a tectonic frame ofcomplex mosaic fragments, link of multiple suture zone and mountain-basin coupling, and has undergon…  相似文献   

9.
内蒙古中部乌拉山岩群是一套变质程度为高角闪岩相-麻粒岩相的早前寒武纪高级变质岩系,出露于内蒙古中部。为划分乌拉山-大青山地区富铝片麻岩的原岩形成时代,通过对侵入乌拉山岩群黑云石榴斜长片麻岩的石英闪长质片麻岩和紫苏花岗质片麻岩变质深成体进行年代学研究,本次研究涉及的实验样品共6件,分别于内蒙古中部乌拉山-大青山地区片麻岩中和变质深成岩中各取3件。分别为矽线石榴黑云斜长片麻岩(TWB19)、黑云斜长片麻岩(TWB20)、含橄榄石方解石大理岩(TWB18)和紫苏花岗质片麻岩(TW7)、石英闪长质片麻岩(TWB6)和花岗闪长质片麻岩(D1227)。结果表明:紫苏花岗质片麻岩(TW7)的加权平均年龄为2462±13Ma,花岗闪长质片麻岩(D1227)加权平均年龄为2512±24Ma,由于后期构造事件对岩石的改造,锆石的实际年龄应更大一些。可见,乌拉山富铝片麻岩原岩形成年代早于2.5Ga。石英闪长质片麻岩(TWB6)的变质年龄为2.2Ga和1.9Ga,指示乌拉山-大青山地区遭受古元古代早期和晚期构造热事件叠加改造。综上所述,乌拉山-大青山地区富铝片麻岩最晚形成时代限定在2.5Ga。  相似文献   

10.
Granitic gneiss on Duku highway in western Tianshan has been dated by the U-Pb zircon method. When plotted on the concordia diagram, the results give linear data array and the upper intercept age of (882 ± 33)Ma, and the age was considered as the crystallization age of the protolith. Granitic gneiss has high ASI value (1.09), high LILE and LREE contents, significantly negative Eu depletion, distinctly negative Ba, Sr, P, Ti and Nb anomalies and indicate continental crust parentage, which is consistent with high initial87Sr/86Sr ratios value (0.7170) and very negative εNd(t)=-14.1. The protolith magma is interpreted as a product of partial melting of the basement rocks of older basement crust.  相似文献   

11.
通过1∶5万朱拉比拉河等图幅区域地质调查工作,在伊春地区发现了新元古代花岗质片麻岩。应用锆石 U-Pb 测龄方法对花岗质片麻岩进行了年代学研究,23个点的206 Pb/238 U表面谐和年龄均在850 Ma 左右,加权平均为850.2±2.1 Ma。该年龄代表花岗质片麻岩体的侵位时间为新元古代;而较新的499 Ma 年龄可能是后期构造事件改造的新生锆石,反映后期构造热事件的年龄;1518 Ma 的年龄应是本次岩浆作用过程中捕获的早期锆石的年龄,该锆石年龄可能代表本区花岗岩的继承性锆石年龄。伊春花岗质片麻岩所在的地区存在前寒武纪的古老微陆块。  相似文献   

12.
The eclogite, discovered in Liuyuan, occurs as lenticular enclave within granitic gneiss. It has typical features of eclogite in petrology and mineralogy. The eclogite provides an important window to reconstruct the tectonic border of the Tarim block. The granitoids, located in Baihu area, yield U-Pb zircon ages of 1 660–2 000 Ma (Palaeoproterozoic), which implies an early Precambrian basement in the area.  相似文献   

13.
The poorly studied Douling Complex is a crystalline basement that developed in the Neoproterozoic-Paleozoic weakly metamorphosed to non-metamorphosed strata at the South Qinling tectonic belt. Five banded dioritic-granitic gneiss samples from the Douling Complex were chosen for LA-MC-ICPMS U-Pb zircon dating, which yielded protolith emplacement ages of 2469 ± 22 Ma, 2479 ± 12 Ma, 2497 ± 21 Ma, 2501 ± 17 Ma and 2509 ± 14 Ma, respectively. An important peak age of ~2.48 Ga was also obtained for a metasedimentary rock in the same region. These discoveries suggest the occurrence of magmatic activity of 2.51–2.47 Ga at the northern margin of the Yangtze craton. The age-corrected ? Hf(t) values obtained from in situ zircon Hf isotopic analysis are mainly between ?5.5 and +0.3, and the two-stage zircon Hf model ages range from 3.30 to 2.95 Ga. Considering two important periods of ~3.3–3.2 Ga and ~2.95–2.90 Ga for the continental crustal growth in the Yangtze craton, we infer that the dioritic-granitic gneisses from the Douling Complex are the products of reworking of Paleo- to Mesoarchean crust at the northern margin of the Yangtze craton at ~2.5 Ga. In addition, metamorphic ages of 837 ± 8 Ma and 818 ± 10 Ma were obtained for zircon overgrowth rims from a dioritic gneiss and a metasedimentary rock, indicating that the main phase amphibolite facies metamorphism of the Doulng Complex occurred during the Neoproterozoic, although its geological meaning remains ambiguous.  相似文献   

14.
Alkalinerocksareoftenassociatedwithextensionaltectonicsandregardedasthecharacteristicproductsoc-curringincontinentalmarginsorriftzones[1].Theywereusuallygeneratedindeep-large-faultzoneandcloselyconnectedwithbasic/ultrabasicrocksinspace.Therefore,alkalinerocksareofsignificanceintectonicpetrology.Atthebeginningofthe1980s,geologicalandgeophysicalstudieswereperformedinPanzhihua-Xichangpaleo-riftzone(Panxiriftzone).However,thesestudiesonlyin-volvedgeologyandpetrochemistryoftheMaomaogouringalkalic…  相似文献   

15.
Knowledge of the mineralizing timing is fundamen-tal to understand the genesis of mineral deposits, and ex-act time spectrum of mineralization is essential to com-prehending the relationship among the genesis of en-dogenic hydrothermal deposits, regional tectonic-magma-tism event and the geodynamics of mineral deposits. The Jiaodong or eastern Shandong gold province islocated in the southeastern margin of the North Chinacraton, and belongs to the Mesozoic circum-Pacific oro-genic gold system…  相似文献   

16.
Gao  LiE  Zeng  LingSen  Xie  KeJia 《科学通报(英文版)》2012,57(6):639-650
Determination of the timing and geochemical nature of early metamorphic and anatectic events in the Himalayan orogen may provide key insights into the physical and chemical behavior of lower crustal materials during the early stage of tectonic evolution in large-scale collisional belts.The Yardoi gneiss dome is the easternmost dome of the North Himalayan Gneiss Domes(NHGD),and contains three types of amphibolites with distinct mineral assemblage,elemental and radiogenic isotope geochemistry,as well as various types of gneisses.SHRIMP zircon U/Pb analyses on the garnet amphibolite and garnet-bearing biotite granitic gneiss yield ages of nearly peak metamorphism at 45.0±1.0 Ma and 47.6±1.8 Ma,respectively,which are 2 to 4 Ma older than the age for partial melting in migmatitic garnet amphibolite(43.5±1.3 Ma).Available data have demonstrated that ultra-high pressure metamorphism in the Tethyan Himalaya occurred at ~55 Ma,and high amphibolite facies to granulite facies metamorphism at 45 to 47 Ma.In addition,partial melting at thickened crustal conditions occurred at 43.5±1.3 Ma,which led to the formation of high Sr/Y ratios two-mica granites.The high-grade metamorphic rocks in the NHGD may represent the subducted front of the Indian continental lithosphere.In large collisional belts,fertile components in crustal materials could melt and form granitic melts with relatively high Na/K and Sr/Y ratios under thickened crustal conditions,significantly different from those formed by decompressional melting during rapid exhumation.  相似文献   

17.
Different types of UHP metamorphic rocks havebeen recently discovered in the Altyn Tagh[1—4], the north-ern margin of Qadam Basin[5—7], the southwestern Tian-shan Mountains[8,9] and the northern Qinling Moun-tains[10,11] in Central and Western China. And these areashave attracted focus attention of geologists at home andabroad to the studying of UHP metamorphism and conti-nental deep subduction. However, as newly discoveredUHP metamorphic terranes, some questions have beenarisen abou…  相似文献   

18.
In order to constrain the formation time of high-grade metamorphic rocks in the Qilian Mountains, U-Pb zircon dating was carried out by using LA-ICPMS technique for a paragneiss of the Hualong Group in the Qilian Mountains basement series and a weakly foliated granite that intruds into the Hualong Group. Zircons from the paragneiss consist dominantly of detrital magma zircons with round or sub-round shape. They have 207Pb/206Pb ages mostly ranging from 880 to 900 Ma, with a weighted mean age of 891 ±9 Ma, which is interpreted as the magma crystallization age of its igneous provenance and can be taken as a lower age limit for the Hualong Group. Magma crystallization age for the weak-foliated granite is 875±8 Ma, which can be taken as an upper age limit for the Hualong Group. Accordingly, the formation time of the Hualong Group is constrained at sometime between 875 and 891 Ma. A few zir- cons from both paragneiss and weak-foliated granite display old inherited ages of 1000 to 1700 Ma and young metamorphic ages of Early Paleozoic. The zircon age distribution pattern confirms that the Qilian Mountains and the northern margin of Qaidam Basin had a united basement, with geotectonic affinity to the Yangtze Block. The results also reveal that sediments of the Hualong Group formed by rapid accumulation due to rapid crustal uplift-erosion. This process may result from intensive Neoproterozoic orogenesis due to assembly of the suppercontinent Rodinia.  相似文献   

19.
Single-grain zircon U-Pb and amphibole 40Ar-39Ar dating have been conducted on a deformed and metamorphosed diorite in the East Kunlun Orogenic Belt, which intruded into the middle Proterozoic Kuhai Group exposed in the south of Xiangride region, Dulan County, NW Qinghai Province. The zircon gives a concordant U-Pb age of (446.5±9.1) Ma. The amphibole yields Ar plateau age of (488.0±1.2) Ma and an isochronal age of (488.9±5.6) Ma. Age results of both stepwise released Ar and conventional K-Ar analysis are remarkably higher than that of zircon U-Pb, suggesting that the amphibole contains excess argon and the amphibole plateau age cannot be taken as the timing of metamorphism or deformation. The zircon age is interpreted to be crystallization age of the diorite pluton, which suggests that an Early-Paleozoic magmatic zone indeed existed in the East Kunlun Orogenic Belt stretching along the region south to the Golmud, Normuhong and Xiangride.  相似文献   

20.
This study presents zircon and garnet ages of a mafic granulite from the high-grade Variscan basement of the Black Forest, Germany and discuss isotope closure temperature of garnet Sm-Nd and U-Pb systems. Zircon grains yield 207Pb/206Pb ages between ~340 and ~414 Ma by the U-Pb and evaporation methods. In contract, garnet dating gives Sm-Nd and Pb-Pb isochron ages of (398±3) Ma and (411±14) Ma, respectively, which are older than most of zircon ages. These data imply that most of zircons lost radiogenic Pb, probably due to metamictization or recrystallisation during the granulite-facies metamorphism (~800℃) at ~340 Ma. Garnet Sm-Nd and U-Pb systems preserve chronological information of pro-grade metamorphism, probably profiting from a fluid-absence metamorphic environment. These results demonstrate that garnet mineral can be a better candidate than zircon mineral to date high-grade metamorphism by the U-Pb and Sm-Nd methods in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号