首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three alternating conjugated copolymers of cyanosubstituted poly(p‐phenylene vinylene) (CN–PPV) with phenylene ethynylene and thienylene vinylene moieties, P1, P2, and P3, were synthesized via cross‐coupling polycondensation with Pd(PPh3)2Cl2 as a catalyst. Their structures were confirmed by 1H‐NMR, IR spectroscopy, elemental analysis, and gel permeation chromatography, and the thermal, photophysical, and electrochemical properties of the copolymers were also investigated. The incorporation of a triple bond into the CN–PPV backbone led to higher reduction potentials, which corresponded to lower lowest unoccupied molecular orbital energy levels. The three copolymers possessed broader absorption spectra, especially copolymer P3 with its polymerization units containing two thiophene rings, which showed the broadest absorption spectrum, from 300 to 710 nm. Their high electron affinities, broad absorptions, and relatively higher oxidation potentials make the copolymers potentially good electron‐acceptor material for use in photovoltaic devices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The evolution of the anisotropic structure in poly(phenylene vinylene) (PPV) films was studied using three nondestructive characterization techniques: prism waveguide coupling, infrared dichroism, and X‐ray diffraction. The anisotropic PPV films were thermally converted from precursor drawn films at fixed length. The three‐dimensional refractive indices, infrared dichroic ratios, crystal alignment, and orientation function were determined from each film. The results show that converted cast PPV film has a highly planar structure with a tendency for the PPV chains to orient parallel to the film surface. The a axis of the crystal unit cell is normal to the film plane. One‐way stretching converts the film from a planar structure to a uniaxial structure.  相似文献   

3.
Synthesis of poly(phenylene acetylene) from poly(phenylene vinylene)   总被引:1,自引:0,他引:1  
Summary The objective of this work was to prepare films of poly(phenylene acetylene) from films of a precursor polymer, namely poly(a, a-dibromoxylylene). This polymer was obtained by selective bromination of the vinylene groups of poly(phenylene vinylene) films in bromine/CHCl3. Pyrolytic dehydrobromination of the brominated films under argon atmosphere gave dark yellow films which showed about 65 wt% of desired phenylene acetylene units.  相似文献   

4.
Summary A series of phenyl ring di-substituted ,-dichloro-p-xylene monomers were copolymerized in situ onto a cross-linked chloromethylated polystyrene resin. A phase-transfer catalyst was employed to facilitate this multiphase heterogeneous polymerization. The electrical as well as the thermogravimetric properties of the conducting grafted resins are reported.  相似文献   

5.
A copolymer of dendronized poly(p‐phenylene vinylene) (PPV), poly{2‐[3′,5′‐bis (2′‐ethylhexyloxy) bnenzyloxy]‐1,4‐phenylene vinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene] (BE‐co‐MEH–PPV), was synthesized with the Gilch route to improve the electroluminescence and photovoltaic properties of the dendronized PPV homopolymer. The polymer was characterized by ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, and electrochemical cyclic voltammetry and compared with the homopolymers poly{2‐[3′, 5′‐bis(2‐ethylhexyloxy) benzyloxy‐1,4‐phenylene vinylene} (BE–PPV) and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH–PPV). Polymer light‐emitting diodes based on the polymers with the configuration of indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/polymer/Ca/Al were fabricated. The electroluminescence efficiency of BE‐co‐MEH–PPV reached 1.64 cd/A, which was much higher than that of BE–PPV (0.68 cd/A) and a little higher than that of MEH–PPV (1.59 cd/A). Photovoltaic properties of the polymer were studied with the device configuration of ITO/PEDOT : PSS/polymer : [6,6J‐phenyl‐C61‐butyric acid methyl ester] (PCBM)/Mg/Al. The power conversion efficiency of the device based on the blend of BE‐co‐MEH–PPV and PCBM with a weight ratio of 1 : 3 reached 1.41% under the illumination of air mass 1.5 (AM1.5) (80 mW/cm2), and this was an improvement in comparison with 0.24% for BE–PPV and 1.32% for MEH–PPV under the same experimental conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
We have investigated the optical properties of poly [2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene] containing oxadiazole in backbone (MEH‐OPPV) in dilute tetrahydrofuran solution and solid solution films. There is a large dihedral angle between the two adjacent monomer units in MEH‐OPPV, which restrains interchain interactions and destroys the conjugation of the polymer to result in blue shifted absorption and emission spectra. The red shifted photoluminescence (PL) peak is continuously changed in the solid solution films with increasing the concentration of MEH‐OPPV. Comparison with the dilute solution, an obvious shoulder peak at 465 nm is found in the UV–vis absorption and PL excitation (PLE) spectra of the MEH‐OPPV film. The intensity of the PLE shoulder at 465 nm is increased with the concentration of MEH‐OPPV in the solid solution films, which is connected with the aggregation of the MEH‐OPPV chains. The interchain interactions are restrained and the π‐stack aggregates of the polymer chains can not form in the MEH‐OPPV due to the large dihedral angle, and then the interchain species are effectively suppressed in the MEH‐OPPV films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Brominated poly(bis(4-methylphenoxyphosphazene) was allowed to react with 1,4-bischloromethylbenzene or 1,4-bischloromethyl-2,5-dimethoxybenzene in solution using phase transfer catalyst or potassium t-butoxide. Poly(p-phenylene vinylene) or poly(2,5-methoxy-1,4-phenylene vinylene) grafted organophosphazene copolymers were obtained. The UV-Vis absorption, photoluminescent, and thermal properties of the copolymers were measured. The copolymers are complete soluble in common organic solvents and fluoresce in the blue color range. The copolymers were used to build a series of organic light emitting diode (OLED). Only weak to nominated intensities with emission color from blue to red were obtained. The photoluminescent and electroluminescent (EL) spectra indicated there is a distribution in the PPV conjugated length. The compositions of the copolymers before and after the graft reaction were analyzed using NMR.  相似文献   

8.
Lara A. Al-Hariri 《Polymer》2010,51(14):2993-2997
Thermal elimination of a water soluble poly(xylylidene) precursor to poly(phenylene vinylene) (PPV) was accomplished in air at 80 °C using the macro-counterion poly(ethylene glycol)-4-nonylphenyl-3-sulfopropyl ether (PEGNOPS). The high relative photoluminescence efficiency was ascribed to the low carbonyl content, with a possible contribution from PPV chain separation, which minimizes radiationless interchain exciton formation. In addition, the PEGNOPS precursor showed no carbonyl formation on long term storage, in contrast to the precursors with dodecylbenzene sulfonate and chloride counterions.  相似文献   

9.
Two new alternating copolymers based on dithienyl benzotriazole segment and phenylene vinyl unit were synthesized by Heck cross coupling method. The polymers exhibited broad absorption bands (from 300 nm to 752 nm for P1 , and from 300 nm to 654 nm for P2 ) in the UV‐visible region with optical bandgap ranging between 1.6 and 1.9 eV and proper electronic energy levels measured by cyclic voltammetry. The photovoltaic properties of the polymers as electron donors with 6.6‐phenyl C61‐butyric acid methyl ester as the electron acceptor in a bulk heterojunction structures were reported. Preliminary results showed moderate power conversion efficiency of 0.36% and 0.4%, respectively, under the illumination of AM 1.5, 100 mW/cm2 with a device structure of ITO/PEDOT : PSS/polymer : PC60BM (1 : 3)/Ca/Al. Furthermore, the side chain effect on properties has also been investigated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The addition of side groups to improve the photooxidative stability of polymers used in polymer-based light-emitting diodes (LEDs) is explored. Infrared spectroscopy and computational chemistry techniques are used to study the effects of chemical substitution of the reactive vinylene moiety in poly(phenylene vinylene) (PPV). The bond order of the vinylene group in small oligomers is calculated using semiempirical techniques to assess the improvement in stability toward oxidants such as singlet oxygen. We find that PPV dimers allow relative comparisons across a range of possible substitutions. Experimental results correlate well with these calculations. The addition of electron-withdrawing substituents, such as nitrile groups, to the vinylene moiety is found to be particularly effective in reducing the reactivity of alkoxy-substituted PPV toward singlet oxygen. The photooxidative stability of a poly(phenylene acetylene) (PPA) derivative is also studied. It appears that this family of polymers is more stable toward photooxidation than are its PPV analogs. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2451–2458, 1998  相似文献   

11.
Louis M Leung  Gillian L Chik 《Polymer》1993,34(24):5174-5179
An attempt to synthesize a series of phenyl ring disubstituted poly(o-, m- and p-phenylene vinylene) is reported. In this ‘one-pot’ reaction, a phase-transfer catalyst was used to promote the extraction of strong base deprotonated bischloromethyl aromatic anions from the aqueous to the organic phase to sustain a nucleophilic substitution reaction with the remaining bischloromethyl monomers. The polymers obtained were characterized for their chemical compositions and physical properties by elemental, i.r. and u.v. spectroscopic, and thermal analyses. The o-substituted polymers were found to have low melting temperatures, good solubilities and high molecular weights, but low yields. The m-substituted monomers, however, produced only non-conjugated poly-m-xylylenes. The p-substituted polymers offered the best combination of yield and physical properties. Films cast from soluble poly(2,5-dibutoxy-p-phenylene vinylene) have electrical volume resistivity in the range 300–500 ohm cm when doped with concentrated sulfuric acid.  相似文献   

12.
Poly(p‐phenylene vinylene) (PPV) derivatives are an important class of conjugated polymers, known for their applications as electroluminescent materials for light‐emitting devices and sensors. These derivatives are highly susceptible to photodegradation by the combined action of oxygen and light. Here, the use of various commercial polymers as protective coatings against the photodegradation of PPV derivatives was explored. Cast films of two similar PPV derivatives, poly[(2‐methoxy‐5‐n‐hexyloxy)‐p‐phenylene vinylene] and poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene], were submitted to photodegradation by exposure to white light under atmospheric conditions in order to verify if the type of side chain (linear or branched) had an effect on the photodegradation. No significant differences in the photodegradation behaviour between the two polymers were noticed. The following commercial polymers were tested as protective coatings for the PPV derivative cast films: 99 and 80% hydrolysed poly(vinyl alcohol) (PVA) and starch. The best results were achieved using coatings of 99% hydrolysed PVA, which increased about 700 times the time necessary for complete degradation of the PPV derivative films. The results show the effectiveness of this coating in minimizing and, possibly, controlling the effects of the photodegradation of PPV derivative films, which can be useful in many applications, e.g. oxygen sensors. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Horng-Jer Tai 《Polymer》2007,48(15):4558-4566
Dielectric properties of poly(butylene succinate) crystallized under different conditions have been reported in the temperature range of 163-383 K and in the frequency range of 0.01-105 Hz. Both the dipolar α and β processes have been identified at low temperatures: the α process is associated with the amorphous fraction while the β with the relaxations in both the amorphous and crystalline fractions. The space charge effect dominates the high temperature dielectric spectra. These spectra have been analyzed in the light of an equivalent circuit model. The Maxwell-Wagner-Sillars polarization, electrode polarization and free charge motion are well resolved. At 383 K, near the melting temperature (387 K), massive melting and subsequent recrystallization have been observed. The peculiar evolution of the spectra is also analyzed using the same equivalent circuit model. The relationship between the fitting parameters and the evolved microstructures is discussed.  相似文献   

14.
Summary A series of polyblends of poly(1,4-phenylene vinylene), PPV, and poly(2,5-dimethoxy-1,4-phenylene vinylene), PDMPV, were prepared in film form from precursor polyblends of the respective sulfonium salt polymers, which were separately prepared from the respectivebis(sulfonium salt) monomers. The blend films were doped with I2 at room temperature to obtain a wide range of electrical conductivities (10–2 to 102Scm–1) depending on the blend composition. The higher the content of PDMPV in the blends the higher was the conductivity.  相似文献   

15.
Two novel poly(p‐phenylene vinylene) (PPV) derivatives with conjugated thiophene side chains, P1 and P2, were synthesized by Wittig‐Horner reaction. The resulting polymers were characterized by 1H‐NMR, FTIR, GPC, DSC, TGA, UV–Vis absorption spectroscopy and cyclic voltammetry (CV). The polymers exhibited good thermal stability and film‐forming ability. The absorption spectra of P1 and P2 showed broader absorption band from 300 to 580 nm compared with poly[(p‐phenylene vinylene)‐alt‐(2‐methoxy‐5‐octyloxy‐p‐phenylene vinylene)] (P3) without conjugated thiophene side chains. Cyclic voltammograms displayed that the bandgap was reduced effectively by attaching conjugated thiophene side chains. This kind of polymer appears to be interesting candidates for solar‐cell applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Conjugated polymers have been the subject of many studies because of their widespread applications in electronic and optoelectronic devices. Poly(p‐phenylene vinylene) is a leading semiconducting polymer in optical applications. This work is focused on the development of thin films of poly(p‐phenylene vinylene) by spin coating and their characterization with Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy to understand their changes. An empirical model has been developed to show the effect of the variables—the spin speed, polymer concentration, and spin time—on the film thickness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effects of platinum metal nanoparticles on a conjugated polymer were investigated by monitoring the electronic structures and measuring the electrical properties of poly(p‐phenylene vinylene) (PPV) and PPV/Pt nanocomposites films. Enhanced current density in PPV/Pt nanocomposite films was obtained by the incorporation of Pt nanoparticles into the conjugated polymer PPV. This result agrees well with our observation of an increase in the electron affinity and an increase in roughness with increasing Pt nanoparticle content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The preparation of dialkyl‐substituted poly(2,5‐didecyl‐1,4‐phenylene vinylene) ( PDDPV ) by the Horner‐Emmons polycondensation is described. Its performance in an organic light‐emitting diode (OLED) device architecture is compared with devices prepared from the analogous dialkoxy‐substituted poly(2,5‐didecyloxy‐1,4‐phenylene vinylene) ( PDOPV ) and the corresponding alkyl‐alkoxy‐substituted alternating copolymer. Additionally, the structure, stability, electrochemical, and optical properties of the PPVs were characterized by gel permeation chromatography, thermogravimetric analysis, NMR spectroscopy, cyclic voltammetry, UV‐Visible spectroscopy, and fluorescence spectroscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41162.  相似文献   

19.
The intermolecular interaction and the conformation in miscible blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) have been investigated by Fourier-transform infrared (FTIR) spectroscopy. The intensity of the C=O out-of-phase stretching (1725 cm–1) of PEI shows a minimum at 70 wt% PEI, whereas that of the C=O in-phase stretching (1778 cm–1) is not perturbed by blending. These intensity variations have been attributed to the effect of blending on the coplanarity of the two imide rings bridged by the phenylene group. Change in coplanarity of these two imide rings alters the intensity of the C=O out-of-phase stretching, but it can not affect the intensity of the C=O in-phase stretching. When the two imide rings are perpendicular to each other, the intensity of the C=O out-of-phase stretching is shown to reach the minimum, corresponding to the observation at 70 wt% PEI. The difference spectra (blend - PEEK - PEI) reveal that the bands associated with the diphenyl ether groups in PEEK are modified by blending with PEI. It is proposed that the favorable interaction takes place between the oxygen lone-pair electrons of the ether group in PEEK and the electron-deficient imide rings in PEI.  相似文献   

20.
The diffusion kinetics of water and acetone into dried PVOH polymer films have been measured simultaneously using the FTIR-ATR technique. The data have been fitted to a pseudo-Fickian model, along with allowance for a ‘lag’ time which lengthens considerably when the water mole fraction is low. It has been found that a case II model is viable at short times when the polymer is ‘glassy’ (<Tg). However, as water enters the polymer (unzipping the chain-chain hydrogen bonding), conversion to a ‘gel’ is rapid and the crystallinity drops concurrently. A Fickian-like model then becomes viable at intermediate times. FTIR-ATR is an excellent technique with which to study sorption from solvent mixtures. In this case, for example, we have demonstrated that acetone does not enter a dry polymer film and that the micro-crystallinity of the PVOH returns at longer times. Neither of these two potentially important results could have been obtained using gravimetric methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号