首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水平涡轮叶片式精量排肥器设计与试验   总被引:1,自引:0,他引:1  
为提高排肥均匀性,以大颗粒尿素为研究对象,设计了一种水平涡轮叶片式精量排肥器,对关键参数进行了设计与机理分析,确定了影响排肥均匀性的影响因素和参数范围,并基于离散元仿真软件确定了对数螺旋线叶片曲面参数。以涡轮叶片数量、涡轮转速和排肥口开度为试验因素,进行了排肥量的单因素试验和排肥均匀性的Box-Behnken多因素试验,结果表明,排肥量与转速呈良好的线性关系,决定系数R2不小于0.96,对于确定叶片数量的排肥涡轮,可匹配不同排肥口开度的涡轮底盘并实时控制排肥涡轮转速来调节排肥量,易于实现变量施肥作业,且排量范围内排肥均匀性较好;涡轮叶片数和排肥口开度的交互作用对排肥均匀性影响高度显著,各因素影响的主次顺序为涡轮叶片数、涡轮转速和排肥口开度;当涡轮叶片数为8个、涡轮转速为98r/min、排肥口开度为40°时,排肥均匀性系数为97.24%,实际试验验证结果与优化结果相吻合;对磷酸二胺颗粒肥料的适应性验证试验结果表明,两种颗粒肥料排肥器排肥均匀性系数接近97%,排肥量稳定性变异系数小于2%,排肥器具有较好的排肥均匀性和排量稳定性;对比分析目前常用外槽轮排肥器,设计的水平涡轮叶片式精量排肥器有效地提高了颗粒肥料的排肥均匀性。  相似文献   

2.
为改进高秆作物传统撒播、条播施肥方式肥料利用率低问题,设计一种高地隙穴施肥作业车,该作业车扎穴施肥单体两侧安装有探针传感器,可以根据作物植株位置进行精准穴施肥。基于RecurDyn-EDEM、EDEM-ANSYS对扎穴施肥机构进行多体动力学—离散元、离散元—有限元仿真分析,并进行扎穴排肥试验,仿真试验明确扎穴施肥单体的运动机理和土壤成穴情况,量化施肥量与排肥器开度之间的函数关系;在扎穴施肥过程中,鸭嘴总变形为0.005 mm,等效应力最大为4.142 2 MPa,远小于结构钢屈服强度,鸭嘴不会发生应力变形。扎穴排肥试验进一步确定施肥单体的实用性,修正施肥量与排肥器开度之间的函数关系,可以针对不同农作物调节排肥轮开度进行精准施肥。  相似文献   

3.
施肥稳定性是评价变量施肥机作业性能的重要指标,为了研究排肥口开度(L)和排肥轴转速(n)的组合对排肥性能的影响规律,本文基于离散单元方法,对同一目标施肥量下,不同L和n组合下的施肥过程进行仿真。首先,通过标定试验,构建了基于广义回归神经网络GRNN的排肥量预测模型,经过验证,其决定系数达到0.9994,预测平均相对误差(MRE)为3.56%。其次根据螺旋外槽轮排肥装置的等排肥量曲线,选择3个排肥量1067.37、2323.04、4206.56g/min为目标排肥量,并利用差分进化算法(DE)确定同一目标施肥量下的控制序列(L,n)的组合。最后,利用离散元仿真软件EDEM 2.8分别对3个目标施肥量,不同控制序列下的排肥过程进行仿真。采用排肥均匀性变异系数σ作为评价排肥稳定性的指标,仿真结果表明,在目标排肥量Q1下,当控制序列为(25mm,17.78r/min)时,σ最小,为5.27%;在其他控制序列,σ均高于20%,排肥稳定性较差,且出现断条现象。在目标排肥量Q2下,当控制序列为(65mm,17.12r/min)时,σ最小,为3.46%。在目标排肥量Q3下,σ均小于4%,且在控制序列(65mm,32.85r/min),σ达到最小,为2.08%。当目标施肥量较小时,控制序列的选择对排肥稳定性影响显著,工作时,应尽量避免开度、转速的边界量。当目标施肥量较大时,控制序列选择对外槽轮排肥稳定性的影响较小。结果表明,螺旋外槽轮排肥器具有较好的排肥稳定性。  相似文献   

4.
针对螺旋锥体离心式排肥器排肥性能需提升、各参数对排肥性能影响规律不明确及相关理论和解析模型研究不深入的问题,建立了颗粒肥料在排肥器内的运动模型,通过理论分析确定了弧形锥体圆盘的母线方程及影响排肥器性能的主要结构参数和范围。采用EDEM离散元仿真软件,开展了以排肥器锥盘离送段水平倾角δ、推板径向偏角γ及锥盘转速n为试验因素,以排肥量稳定性变异系数CV1、各排肥管道排出肥料的一致性变异系数CV2及随机选取的某一路排肥管道的同行排肥量一致性变异系数CV3作为响应指标的二次回归正交旋转组合试验,应用Design-Expert软件分析了各参数对排肥性能的影响规律,确定了排肥器最优结构参数为水平倾角30.4°、推板径向偏角3.2°、锥盘转速130r/min。为验证所优化排肥器的排肥性能,基于排肥器最优参数组合,开展排肥器在100、110、120、130r/min的排量标定及性能验证试验,试验结果表明,排肥器行最大供肥速率为1.6kg/min,排肥量稳定性变异系数不大于3.12%,各行排肥量一致性变异系数不大于5.29%,同行排肥量一致性变异系数不大于2.05%,各指标均满足施肥量要求。田间试验表明,排肥器排肥量稳定性变异系数不大于4.57%、各行排肥量一致性变异系数不大于6.98%、同行排肥量一致性变异系数不大于3.56%,满足行业标准要求。该研究可为进一步提高排肥器性能及排肥器设计提供理论参考。  相似文献   

5.
为改进插板式叶轮排肥器的肥料填充性能,针对插板式叶轮排肥器的安装角度,采用离散元仿真技术进行了试验研究。以体积确定的叶轮槽轮单圈排肥量作为基准,在叶轮转速30r/min、开度40mm的条件下,对安转角度从0°~90°开展7组离散元仿真试验。结果表明:安装倾角为36.4°时,排肥器单圈排肥量与基准值一致,且在该角度±10°范围内均满足相对误差小于5%的施肥要求。在该安装角度下开展了3种肥料的验证试验,结果表明:安装角度为36.4°时,不同肥料单圈排肥量与开度呈线性关系,开度全调节范围内单圈排肥量线性回归的R 2为0.995以上,满足插板对工作长度调节的需求,与仿真结果基本吻合。本研究为插板式叶轮排肥器的设计优化提供了参考和理论依据。  相似文献   

6.
为了提高玉米种植中化肥的利用率、减少资源浪费,基于玉米穴播穴施肥的理论设计了一台玉米变量穴施肥的试验台。在前人研究运用外槽轮排肥器实现变量施肥的基础上,通过控制步进电机精准的启动停止运转与排肥口的挡片设计来实现玉米穴施肥,同时配合玉米排种器监测装置实现种肥同步。玉米穴施肥装置主要由外槽轮排肥器、步进电机、排肥口挡片和光电检测装置构成,具有结构简单、体积小的优点,控制系统操作简单,易于推广。试验结果表明:总排肥变异性系数为4.39%,在开度10mm下排肥效果最佳,排肥变异性系数为0.28%,符合国家标准≤7.8%,且实际穴距与种肥距离符合相关农艺要求。  相似文献   

7.
为满足玉米生长中后期的追肥需求,本文设计一种气力集排式精量配混施肥装置。电机驱动叶片旋转进行混肥,将肥料分配器内部设计成锥形结构。基于流体动力学和离散元耦合法对分配器排肥口倾角、分配器上端波纹管的结构和布置方式进行研究;以排肥口倾角、输送气速和波纹管长度为试验因素,以各行排肥量变异系数为试验指标,进行三元二次回归正交组合设计试验。试验结果表明,当排肥口倾角45°、输送气速35m/s、波纹管长度568mm时,性能最优。混肥器进口采用中心布置方式,叶片数量为8。田间试验结果表明,该机施肥量误差小于2%,总施肥量稳定性变异系数为2%,施肥断条率低于2%,满足国家标准。  相似文献   

8.
为提高水田侧深施肥排肥器稳定性与均匀性,增强肥量调节能力,保证水田侧深施肥作业效率与质量,结合黑龙江地区水田施肥农艺要求,设计了一种圆锥盘推板式双行排肥器。阐述了排肥器工作原理,构建了肥料不同阶段的力学模型,确定了圆锥转盘结构参数与临界转速;应用离散元软件EDEM仿真分析推板数量对肥料填充能力与排肥性能的影响规律,得出推板数量为8时,排肥器具有最佳排肥性能;采用全因子试验方法开展圆锥转盘转速为15~45 r/min、排肥口开度为5~25 mm条件下排肥器排肥量和排肥性能的台架试验,试验结果表明,排肥量范围为122~934 kg/hm2,与圆锥转盘转速和排肥口开度均具有较高的线性相关性,且与圆锥转盘转速相关性最高;双行排肥量一致性变异系数、总排肥量稳定性变异系数和排肥均匀性变异系数范围分别为1.01%~3.88%、1.05%~3.81%、6.64%~15.79%,排肥器倾斜状态下双行排肥量一致性变异系数最大值为6.17%,试验结果满足水田侧深施肥性能要求。  相似文献   

9.
电控液压双变量施肥机排肥试验研究   总被引:1,自引:0,他引:1  
为了分析各因素对外槽轮排肥器排肥量的影响,通过标定试验,利用线性回归方程得出排肥轴驱动信号与排肥轴转速的关系,并得到一个合理的排肥轴转速区间。同时,采用正交试验设计的研究方法,确定排肥轴转速(N)、槽轮开度(L)、肥料种类对双变量施肥机排肥量的影响,并对正交试验结果进行了极差分析和方差分析。研究结果表明,影响排肥量大小的因素依次为槽轮开度、排肥轴转速、肥料种类。由此,可为减弱外槽轮排肥器脉动性等后续研究提供重要理论参考。  相似文献   

10.
水田侧深施肥装置关键部件设计与试验   总被引:1,自引:0,他引:1  
针对水田侧深施肥装置施肥均匀性低、作业性能不稳定、输肥管路堵塞等问题,结合水田侧深施肥的农艺特点,对水田侧深施肥装置关键部件排肥器和气力输送系统进行设计与分析,通过运动学和动力学的方法得出排肥轮转速越大越有利于提高施肥均匀性,计算得出排肥轮转速的最大理论值为150 r/min,并设计了适宜输送颗粒肥的气力输送系统。采用二次正交旋转组合设计试验,以排肥轮转速、插秧机前进速度、风机风速为影响因素,以施肥均匀性施肥量均值和施肥均匀性变异系数为响应指标,利用JPS-12型排种器检测试验台对施肥装置的排肥性能进行台架试验,运用Design-Expert软件对试验数据进行方差分析和响应面分析,得到影响因素与响应指标之间的数学模型,并对数学模型进行优化及验证。试验结果表明:在排肥轮转速21.96 r/min、前进速度0.93 m/s、风机风速22.93 m/s条件下,施肥装置的施肥均匀性变异系数为28.25%,且满足黑龙江省寒地稻作区侧深施肥最小施肥量150 kg/hm2的农艺要求。  相似文献   

11.
变量撒肥机设计参数研究及控制系统设计   总被引:1,自引:0,他引:1  
侯蕊  朱瑞祥 《农机化研究》2015,(4):114-116,120
为了提高变量撒肥机的施肥精度,尽可能地减少肥料浪费和对环境造成的污染,对变量撒肥机的关键设计参数进行了研究。结果表明,肥箱内肥料高度对排肥量影响不显著,排肥口开度和施肥量呈比例函数关系,并在此基础上设计了一种用于变量撒肥机控制系统。该系统可以根据撒肥机的车速变化控制排肥口的大小,提高施肥质量。实验为变量撒肥机具的控制系统设计提供了依据,所设计的变量撒肥机具有更好的施肥性能。  相似文献   

12.
基于模糊PID的冬小麦变量追肥优化控制系统设计与试验   总被引:4,自引:0,他引:4  
为了实现冬小麦实时变量精确追肥,研究了基于模糊PID控制技术的变量追肥机追肥量实时调整算法,通过对排肥器转速和开度双变量调节,实现追肥量的优化控制。系统首先采用粒子群优化算法确定PID控制器参数的初始值,然后通过实时获取冬小麦冠层归一化植被指数和排肥器实时状态,结合模糊控制理论和PID控制技术,对PID参数进行在线整定,实时调整排肥器的转速和开度,从而实现追肥量的最优控制。试验结果表明:施肥过程中,施肥量存在波动性。但施肥量变异系数小,最大为3.22%,均值为2.09%,可以满足田间变量施肥的要求。模糊PID控制算法具有良好的动态稳定性和跟踪性能,无论是室内试验还是大田试验的控制精度均达到86%以上。  相似文献   

13.
双齿轮式排肥器设计与试验   总被引:4,自引:0,他引:4  
为了提高颗粒肥料的施肥均匀性,设计了双齿轮式排肥器。利用离散元软件对排肥过程进行仿真分析,以排肥轮压力角、排肥轮间隙为试验因素,以排肥均匀度变异系数为排肥效果评价指标,分析因素对指标的影响。单因素试验结果表明,排肥轮压力角在15°~25°,排肥轮间隙在4~6 mm,排肥效果较好;通过二次通用旋转组合试验,建立了两个因素与评价指标的回归方程,试验结果表明,随排肥轮压力角、排肥轮间隙的增大,排肥均匀度变异系数均呈现先增大、后减小的趋势,当排肥轮压力角为19. 52°、排肥轮间隙为4. 7 mm时,排肥器具有最优的排肥效果,此时理论计算和仿真试验的排肥均匀度变异系数分别为15. 30%和14. 58%,两者偏差为0. 72个百分点,说明回归模型准确。最优结构参数组合下双齿轮式排肥器的台架试验结果表明,排肥量可通过排肥轮转速线性调节,排肥均匀度变异系数为15. 42%,与仿真值及理论值基本一致;同等条件下外槽轮排肥器的排肥均匀度变异系数为20. 29%,试验排肥器排肥均匀度变异系数提高了31. 58%,排肥均匀性得到明显改善。  相似文献   

14.
齐兴源  周志艳  林蜀云  徐良 《农业机械学报》2018,49(S1):164-170,180
目前水稻施追肥以离心圆盘式撒肥机为主,虽具有幅宽大、作业效率高的特点,但是变量控制精度差。为了满足水稻变量施肥的作业要求,设计了一种气力式变量施肥机,在满足幅宽要求的基础上,还能够实现在幅宽方向上的变量控制施肥。设计了用于该机的肥料喷撒器,对该喷撒器的肥料运动进行了理论分析,并对不同挡板结构的喷撒器进行气流流场模拟分析,对在不同转速下各排肥口的施肥量和不同挡板类型的施肥喷撒器在各自施肥范围内的施肥均匀性进行了试验。试验结果表明:转速对各排肥口的排肥量没有显著性影响,各排肥口的排肥量误差在均值的5%以内;转速和喷撒器的挡板结构类型对单一喷撒器施肥范围内的施肥均匀性具有显著性影响,以施肥均匀性变异系数为指标,排肥轮转速在30r/min左右时,整体排肥均匀性变异系数优于其他转速;而圆锥形挡板喷撒器在所有转速下其排肥均匀性变异系数均优于其他挡板结构的喷撒器,且当排肥轮转速大于30r/min时,该喷撒器的施肥均匀性变异系数小于8%。就挡板结构对喷撒器出口气流场的影响和施肥均匀性进行了比较研究,发现二者具有相似性,初步断定气流场对施肥均匀性具有一定影响。在实际作业过程中为了使单个排肥口的排肥均匀性更好,应当采用圆锥挡板喷撒器,并且在确定作业区域的施肥量下,尽可能调整车速,使排肥轮转速达到30r/min以上,以最大程度保证施肥区域的施肥均匀性。  相似文献   

15.
稻麦精准变量施肥机排肥性能分析与试验   总被引:8,自引:0,他引:8  
为提高基于近地光谱技术的稻麦精准变量施肥机排肥性能稳定性,改善变量施肥控制精度,建立了外槽轮式变量施肥机离散元仿真模型,运用离散单元法和EDEM 2.2软件对施肥机排肥过程进行性能分析和数值模拟,研究不同排肥器结构和施肥控制策略对施肥机排肥稳定性的影响,并通过台架试验和田间试验验证仿真模型的准确性。结果表明:改进后的排肥器施肥量变异性系数明显减小,标准差减小14.59 g,变异系数降低9.9%;采用转速优先控制策略,当槽轮开度为19.34 mm时,排肥量稳定性系数最佳为1.09%;采用开度优先控制策略,当槽轮转速为55.75 r/min时,排肥量变异性系数最小为1.85%;与验证试验结果相比,误差最大为14.06%。结果验证了离散元仿真方法分析颗粒运动过程的准确性,表明所设计改进的排肥器能够提高施肥机排肥稳定性,满足稻麦精准变量施肥要求。  相似文献   

16.
四要素变量施肥机肥箱施肥量控制算法设计与试验   总被引:2,自引:0,他引:2  
针对黑龙江农垦地区垄作玉米施肥过程中遇到的肥料分层问题,设计了一种四要素变量施肥控制系统。系统采用电液比例控制技术,主要由液晶显示终端、变量施肥控制器、4路液压马达和编码器、4路排肥机构(排肥轴和外槽轮)和GNSS模块组成。为了实现氮肥、磷肥、钾肥和微肥的一次性及时、准确施用,提出了一种基于复合交叉原则的各路施肥量确定策略,基于PID技术设计了液压马达控制算法。根据用户在变量施肥控制软件中设置的目标施肥量,系统自动确定各肥箱精确施肥量,基于PID液压马达控制算法,实时计算4路液压马达的目标转速,同步向控制器发送4路转速指令,一次性完成氮肥、磷肥、钾肥和微肥4种肥料的同步变量施用。为了验证各路施肥量控制算法的效果,分别进行了PID算法响应时间和精度试验、变量施肥系统单质肥排肥性能验证试验和作业条件下各肥箱施肥量控制算法验证试验。试验结果表明,基于PID技术的排肥轴转速控制算法响应时间不大于0.5s;变量施肥系统单质肥排肥性能误差绝对值不大于3%;作业条件下各路施肥量控制算法显著减少了氮素的施用量,实现了氮肥、磷肥、钾肥的精确投入。四要素变量施肥机各路施肥量控制算法完全满足了垦区玉米施肥精确、均匀施用的要求。  相似文献   

17.
为提高肥料利用率、降低肥料施用量、实现油菜根区施肥,结合油菜种植施肥农艺要求,提出了一种油菜侧深穴施肥工艺,设计了一种机械式穴施肥装置,阐述了穴施肥装置的工作过程,确定了穴施肥装置的基本参数,建立了充肥和排肥环节中肥料颗粒群的力学模型,分析了影响穴施肥装置成穴性能的主要因素;应用离散元软件EDEM对穴施肥排肥器的成穴性能进行了仿真试验,分析了排肥轮转速、充肥型孔长度、导肥管材料对穴排肥量误差和穴径长轴长度的影响;利用正交组合试验确定了成穴性能较优的参数组合,排肥轮转速为60r/min、充肥型孔长度为18mm、导肥管材料为ABS塑料管时,穴排肥量误差为7.05%、穴径长轴长度为62.45mm;优选参数组合下的排肥性能试验结果表明,排肥轮转速为30~90r/min时,穴排肥量误差为4.56%~15.69%、穴径长轴长度为76.32~91.50mm、穴径长轴长度稳定性变异系数为4.53%~9.78%、穴距误差为3.24%~7.31%;田间试验表明,排肥轮转速为30~90r/min时,穴排肥量误差为4.73%~16.07%、穴径长轴长度为85.21~101.65mm、穴径长轴长度稳定性变异系数为4.82%~10.63%、穴距误差为3.36%~7.58%、施肥深度稳定性变异系数为6.43%~10.85%,成穴性能较好,满足穴施肥要求。  相似文献   

18.
针对现有排肥装置存在调节精度低、肥量调节不均匀等问题,设计一种叠片式排肥量调节装置,其能提高排肥量调节装置性能。调节装置为叠片式,叠片呈梯形,叠片的底部设有连接板,连接板的两端分别设有铰接孔,叠片沿中轴线偏向右侧向内折弯,叠片的两侧边分别向内和向外折弯。结合正交旋转组合试验设计最终确定,折弯线相对中轴线偏转角度4.63°、向内折弯角14.4°、向外折弯角10.57°,起点与中轴线的距离4.27 mm,此时理论上排量一致性变异系数为0.72%,排肥稳定性变异系数为0.39%,排肥均匀性变异系数为1.77%。田间验证试验结果表明:排量一致性变异系数为0.81%、排肥稳定性变异系数为0.42%、排肥均匀性变异系数为1.85%。  相似文献   

19.
针对粉末状有机肥湿度大、流动性差、条施困难等问题,设计了一种粉末状有机肥排肥器。该装置主要由肥箱、排肥拨轮、防自流挡板和排肥轴组成。为了提高排肥器的适用性,以不同含水率((28±1)%、(32±1)%、(36±1)%)的粉末状有机肥为研究对象进行排肥器设计。对拨轮推动过程中的有机肥进行力学分析,将排肥拨轮设计成摆线型。为了防止有机肥直接通过肥箱底板的排肥口产生自流现象,以及破碎结块的有机肥,设计了防自流挡板。以排肥指数和排肥口宽度为试验因素,排肥稳定性变异系数为性能指标,进行二次正交旋转组合试验,建立排肥器离散元仿真模型,得到排肥指数为6个、排肥口宽度36.36mm时排肥稳定性最好;以断条率、各行排肥量一致性变异系数、排肥稳定性变异系数与排肥均匀性变异系数为评价指标对设计的排肥器进行性能测试试验,试验结果表明:排肥器对不同含水率有机肥以5~8km/h的速度施用时各性能指标均在规定范围内,工作性能稳定,满足技术要求。  相似文献   

20.
免耕播种机精量穴施肥系统设计与试验   总被引:1,自引:0,他引:1  
为实现玉米精量穴施肥农业技术要求,提高穴施肥质量,设计了一种穴施肥控制系统。应用颗粒系统仿真软件EDEM对穴施肥控制装置成穴性能进行了仿真研究,表明穴施肥装置在播种速度3~7 km/h时,鸭嘴阀成穴性能较好,成穴性能随着播种机速度增加逐渐减弱。通过穴施肥控制算法,调节种子脱离排种口与肥料脱离排肥口的时间间隔t_3,控制穴施肥料与穴播种子水平距离a,实现穴施肥位置控制;调节排肥轴转速和鸭嘴阀开合频率,实现穴施肥量控制。采用正交旋转组合试验,以播种机行进速度、鸭嘴阀旋转角、穴施肥装置安装高度为试验因素,穴距精度和穴施肥量精度为试验指标,应用响应面分析法,进行三因素五水平正交试验,结果表明,在播种机行进速度为7 km/h,最佳参数组合为:旋转角33.37°,安装高度17.30 cm。田间试验结果表明,在播种机行进速度3~7 km/h,旋转角33.37°,安装高度17.30 cm时,穴距精度可达84.76%,穴施肥量精度可达87.20%,满足玉米精量穴施肥控制技术农业要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号