首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 61 毫秒
1.
定义了印度洋-太平洋暖池的强度变化指数和面积变化指数,分析了其年代际变化的特征。结果表明:20世纪40年代以前,暖池强度和面积基本没有明显的变化趋势;40-80年代,有一个相对较小的增加趋势;80年代以后至2000年增加的趋势加大。将水平风速分解为无辐散分量和无旋分量,分析了暖池上空大气环流对该暖池年代际变化的响应,发现尽管暖池上空大气环流对该暖池年代际变化的响应并不十分明显,但在特定的季节和特定的对流层高度上这种响应也是明显的。  相似文献   

2.
印度洋-太平洋暖池的变异研究   总被引:1,自引:2,他引:1  
为了研究在何种时间尺度上定义研究印度洋-太平洋暖池(简称印-太暖池)更有意义, 本文中应用功率谱等统计学方法, 对印-太暖池的季节、年际及年代际变化特征进行了分析.结果表明, 印-太暖池、东印度洋暖池(简称东印暖池)在季节变化上表现为单峰结构, 而西太平洋暖池(简称西太暖池)则为双峰结构; 在年际变化上印-太暖池和西太暖池表现出很强的3-6年变化周期, 东印暖池则存在准两年的振荡周期; 印-太暖池还存在10年以上的年代际周期振荡, 特别是70年代中后期的年代际突变明显, 而东印暖池的这种变化更为明显.由此可知印-太暖池的年代际变化与东印暖池、西太暖池年代际变化较为相似, 季节和年际变化颇为不同, 所以, 在研究年代际尺度的问题上, 定义并研究印-太暖池的意义更大, 而在研究年际、季节尺度上的问题时东印暖池、西太暖池应分而视之.  相似文献   

3.
首先通过对英国大气科学数据中心海表面温度资料和Levitus随深度变化的海温资料的分析,给出了印度洋-太平洋暖池季节变化的详细描述.另外,利用NCEP/NCAR再分析大气资料中的风场数据,采取将水平风场分量分解为无辐散分量和无旋分量的方法,分析了相应于暖池季节变化的大气环流形式.得到了这样的结论:第一,印度洋-太平洋暖池的位置随季节变化南北移动;暖池面积在北半球的5月和9月达到两个极大值;无论就海表面温度还是深度而言,该暖池分别存在一或两个强度中心.第二,尽管印度洋-太平洋暖池中间被南亚大陆所间隔,但是暖池上空对流层大气运动对于暖池的季节变化却是作为一个整体响应的.  相似文献   

4.
西太平洋暖池研究综述   总被引:2,自引:0,他引:2  
西太平洋暖池(Western Pacific Warm Pool)是全球海温最高的海域,汇聚了巨大的热能,在地球气候系统中具有非常重要的作用。本文综述了近30年来有关西太平洋暖池的研究进展,包括西太平洋暖池的维持机制、在不同时间尺度西太平洋暖池的变异特征和物理机制,以及西太平洋暖池的观测和数值模拟等领域的研究进展。西太平洋暖池的维持是现有地形下大气过程和海洋过程相互作用导致的,在季节内到世纪尺度均存在很强的变化。其中:季节内变化的驱动机制主要包括与大气季节内振荡(Madden Julian Oscillation)相关的对流和海表面热通量变化,以及海洋波动等海洋动力过程;季节变化主要是太阳辐射的季节变化导致;在年际尺度上,西太平洋暖池作为El Ni?o-Southern Oscillation的一部分而振荡具有显著年际变化;太平洋代际振荡(Pacific Decadal Oscillation)和大西洋代际振荡(Atlantic Multi-decadal Oscillation)驱动着西太平洋暖池的年代际变化;世纪尺度的变化显示全球变暖背景下西太平洋暖池存在扩张趋势。人类对西太平洋暖池的系统观测始于海洋观测卫星的使用,随后历经WCRP/TOGA、TAO/TRITON、TOGA-COARE、WOCE、Argo、SPICE、NPOCE等多个观测计划,极大促进了西太平洋暖池的研究。但截止到第五次耦合模式比对计划(Coupled Model Intercomparison Project 5),多数气候模式仍未能克服热带模拟偏差,对西太平洋暖池的模拟效果较差,表明在西太平洋暖池动力学的理解和模拟方面仍有较大进步空间。  相似文献   

5.
为了增进对南印度洋副热带偶极子(Subtropical Indian Ocean Dipole,SIOD)年代际变化的认识,基于Hadley中心的海表面温度(sea surface temperature,SST)、美国国家环境预报中心的大气再分析数据集Ⅰ(NCEP-NCAR Reanalysis1,NCEP)的大气再分析数据和欧洲中期天气预报中心的海洋再分析数据(Ocean Reanalysis System 4,ORAS4)等,本文分析了1958~2020年SIOD年代际转变的特征和物理机制。结果显示,2000年之前,SIOD存在2~4 a和4~6 a两个年际主周期,但近20 a(2000~2020年)其年际变化周期以1.5~2.0 a为主。与此同时,SIOD的空间特征及其强度在1987年和2004年左右出现了两次显著的年代际转变:1958~1986年(P1)期间强度最大,1987~2003年(P2)期间最弱,2004~2020年(P3)期间居中;P1期间SIOD的最大正SST异常(sea surface temperature anomalies,SSTA)中心位于(46°~80...  相似文献   

6.
应用美国联合预警中心(Joint Typhoon Warning Center,JTWC)的台风最佳路径资料、美国国家海洋大气局(National Oceanic and Atmospheric Administration,NOAA)的扩展海表面温度资料以及美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)和美国国家大气科学研究中心(National Center for Atmospheric Research,NCAR)的大气环流场资料,研究了20世纪90年代西太平洋暖池(简称暖池)年代际扩张对西北太平洋台风和登陆中国沿岸台风的影响。研究发现,相比于暖池扩张前期(1965—1992),后期(1993—2013)台风生成在西北太平洋中部区域(10°—20°N,135°—145°E)显著减弱,在10°—20°N,145°—160°E区域和南海北部区域则表现出增多的特点。台风移动路径变异特征呈现为移动进入南海和登陆中国东部沿岸的西行和西北行路径减少,登陆日本的转向型路径增多,同时登陆我国海南岛和东南部沿岸的台风增多。进一步探查这种影响的可能原因发现,与暖池扩张密切相关的太平洋年代际变化引起的纬向环流的变异是西北太平洋中部台风生成减少的主要原因;而南海北部台风生成增多则归因于南海区域局地环流特征的变异。同时,南海北部台风生成增多是登陆我国海南岛和东南沿岸台风增多的主要决定因素。  相似文献   

7.
基于WOA18(World Ocean Atlas)温盐数据集,分析印度洋等密度面的气候态分布,而后选取1985—1994年、1995—2004年和2005—2017年3个时段,分析等密度面的年代际变化。研究给出了11个等密度面深度的气候态分布,其中σ0=26.00 kg/m3的等密度面(参考压强为0 dbar)在 40°S附近露头,随着位势密度的增大,等密度面露头区逐渐南移直至消失;位势密度大于σ0=26.95kg/m3且小于等于σ2=37.00kg/m3的等密度面最深处均位于马达加斯加南侧,在北印度洋的深度变化不大。重点分析了σ0=26.00 kg/m3,σ1=31.87 kg/m3(参考压强为1 000 dbar),σ2=36.805 kg/m3(参考压强为2 000 dbar)3个等密度面深度和盐度的年代际变化,研究表明两者均存在显著的年代际变化。对于σ0=26.00kg/m3等密度面,深度先变浅后加深,年代际变化主要位于30°S—40°S(等密度面深度快速变化区);等密度面盐度在1995—2004年和1985—1994年的差异与2005—2017年和1995—2004年的差异中基本呈现相反的变化。 σ1=31.87kg/m3σ2=36.805kg/m3的等密度面深度年代际变化都集中于40°S—50°S海域;总体上盐度的年代际变化前者表现为减小,后者表现为增加。  相似文献   

8.
太平洋年代际变化研究进展浅析   总被引:1,自引:3,他引:1  
综述了近几年太平洋年代际变化形成机制或起因的7种代表性观点,对已有观点作了初步评述,并提出未来太平洋年代际变化研究应关注以下方面:太平洋年代际变化的多重模态及相应的多重机制,不同时空尺度海洋现象间的相互作用,南太平洋年代际变化及在全太平洋年代际变化中的作用,ENSO与PDO的预测,海洋环流的年代际变化及其对气候变化的作用,海洋热能、机械能的收支及转换等关键问题.  相似文献   

9.
众所周知,ENSO(El Nino/ Southern Oscillation)是发生在热带太平洋的年际时间尺度上最强的气候信号,与 El Nino (La Nina)相应的正(负)海温距平(SSTA)主要分布于赤道中东太平洋地区(Rasmusson et al.,1982)。相对于热带太平洋的年际ENSO现象,人们注意到北太平洋海平面气压(SLP)存在更长周期的年代际变化(Trenberth et al.,1994),有人认为这与北太平洋的表层温度(SST)变化有关(Latif et al.,1994),也有人认为与热带SST的异常关系更为密切(Jacobs et al.,1994)。20世纪80年代后的ENSO事件和20世纪60,70年代有明显的差别(Wang,1995),20世纪90年后El Nino发生频数增加,并且在1997和1998年出现了20世纪最强的一次Nino事件(McPhaden,1999)。 因此,不论是作为大气年代际变化可能的一个驱动因子,还是作为年际ENSO的背景场,从整体上了解太平洋SST的年代际时间尺度上的时、空变化特征都是十分重要的。  相似文献   

10.
南印度洋SST与南亚季风环流年代际变化的研究   总被引:2,自引:0,他引:2  
利用美国NCEP全球大气再分析资料和JONES全球海表面温度异常(SSTA)资料,分析了南印度洋SSTA和南亚季风环流年代际变化的特征。研究发现,无论是南印度洋副热带海水辐合区的SST还是赤道以北非洲西海岸附近上升运动海区的SST的长期变化趋势,除了准3-5年的变化以外,还存在着明显的年代际的变化。对于全球最显著南亚季风环流的分析表明,南亚季风环流也存在明显的年代际时间尺度的变化。与南太平洋SST的年代际变化相比,南印度洋SST的变化周期要相对短一些。通过分析南半球冷空气年代际活动的特征发现,冷空气与南印度洋SST年代际时间尺度的变化具有密切的联系。  相似文献   

11.
The characteristics of temperature and salinity variation in the Pacific warm pool were investigated using Empirical Orthogonal Function (EOF) analysis on one year's temperature and salinity data in the surface layer (0–50 m) obtained from the Triangle Trans-Ocean Buoy Network (TRITON) buoy array. Two dominant modes of surface temperature and salinity variation were found. One is a positive correlation mode where temperature and salinity were scattered almost parallel to isopycnal lines in a T-S diagram, which has little effect on the density field. The other is a negative correlation mode where temperature and salinity were distributed across isopycnal lines, which has a substantial impact on the density field. In particular, we found that the negative correlation mode at 5°N, 156°E was predominant on a seasonal time scale and contributed to the surface dynamic height variation, and therefore to surface geostrophic current. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The interdecadal climate variability affects marine ecosystems in both the subtropical and subarctic gyres, consequently the position of the Transition Zone Chlorophyll Front (TZCF). A three-dimensional physical-biological model has been used to study interdecadal variation of the TZCF using a retrospective analysis of a 30-year (1960–1990) model simulation. The physical-biological model is forced with the monthly mean heat flux and surface wind stress from the COADS. The modeled winter mixed layer depth (MLD) shows the largest increase between 30°N and 40°N in the central North Pacific, with a value of 40–60% higher during 1979–90 relative to 1964–75 values. The winter Ekman pumping velocity difference between 1979–90 and 1964–75 shows the largest increase located between 30°N and 45°N in the central and eastern North Pacific. The modeled winter surface nitrate difference between 1979–90 and 1964–75 shows increase in the latitudinal band between 30°N and 45°N from the west to the east (135°E–135°W), the modeled nitrate concentration is about 10 to 50% higher during the period of 1979–90 relative to 1964–75 values depending upon locations. The increase in the winter surface nitrate concentration during 1979-90 is caused by a combination of the winter MLD increase and the winter Ekman pumping enhancement. The modeled nitrate concentration increase after 1976–77 enhances primary productivity in the central North Pacific. Enhanced primary productivity after the 1976–77 climatic shift contributes higher phytoplankton biomass and therefore elevates chlorophyll level in the central North Pacific. Increase in the modeled chlorophyll expand the chlorophyll transitional zone and push the TZCF equatorward. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Using the 28°C isotherm to define the Western Pacific Warm Pool(WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind,precipitation, net heat fluxes and current velocity data. A DT=–0.4°C is more suitable than other temperature criterion for determining the mixed layer(ML) and barrier layer(BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer(DL). The BL thickness(BLT) is the thickest, while the ML thickness(MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness(DLT) and BLT.They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15°C, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41–0.45. Zonal currents, i.e., the South Equatorial Current(SEC)and North Equatorial Counter Current(NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher(lower) winds cause both the MLT and BLT to thicken(thin), a stronger(weaker)NECC induces MLT, BLT, and DLT to thin(thicken), and a stronger(weaker) SEC causes both the MLT and BLT to thicken(thin) and the DLT to thin(thicken). An increase(decrease) in the net heat fluxes causes the MLT and BLT to thicken(thin) but the DLT to thin(thicken), while a stronger(weaker) precipitation favors thinner(thicker)MLT but thicker(thinner) BLT and DLT. In addition, a stronger(weaker) NECC and SEC cause the temperature of the three layers to decrease(increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell(STC).  相似文献   

14.
太平洋-印度洋暖池次表层水温与南海夏季风爆发   总被引:3,自引:0,他引:3  
为探索太平洋—印度洋热带海域次表层水温对南海季风的影响,用Argo剖面浮标等实测资料,分析了太平洋—印度洋暖池次表层水温异常对南海夏季风爆发的影响。结果表明:冬季,太—印暖池次表层水温偏暖(冷)时,翌年南海夏季风爆发时间偏早(晚)是主要现象。太—印暖池次表层水温偏暖,可能引起Walker环流加强,西太平洋副热带高压偏弱,中心位置偏北偏东,南海和西太平洋上空对流层下层有气旋性距平环流出现,有利于低空西到西南气流的加强,导致南海夏季风爆发偏早;太—印暖池次表层水温偏冷,可能引起Walker环流东移并减弱,西太平洋副热带高压偏强,中心位置偏南偏西,南海和西太平洋上空对流层下层有反旋性距平环流出现,不利于低空西到西南气流的加强,导致南海夏季风爆发偏晚。结论:冬季,太—印暖池次表层水温偏暖(冷),翌年南海夏季风爆发时间偏早(晚)是主要现象。  相似文献   

15.
文章利用观测和模式数据, 并基于混合层盐度收支方法, 研究了热带东太平洋淡水池的季节变化。研究发现: 热带东太平洋淡水池具有显著的季节变化, 由海表强迫(蒸发与降水)、水平平流和次表层过程共同控制。淡水池的季节变化主要分为扩张与收缩两个阶段。4月至11月为扩张阶段, 淡水池向西扩张, 最大体积和面积比最小时扩大将近一倍, 分别达到2.83×10 5km 3和8.94×10 6km 2。热带辐合带向北移动带来的强降水是淡水池扩张的主要原因, 海表强迫决定了混合层盐度降低。12月至3月为淡水池收缩阶段, 海表淡水通量的减弱、水平平流和次表层过程的增强导致混合层盐度升高, 淡水池向东收缩。  相似文献   

16.
基于1950~2011年间的月平均温、盐度资料,以28℃等温线作为西太平洋暖池的定义标准,并取ΔT=-0.4℃,分别计算了暖池区(20°N~15°S,120°E~140°W)各格点混合层、障碍层和深层的平均盐度,构成了暖池热盐结构的盐度场.据此,运用EOF分解法分析了暖池热盐结构盐度距平场主要模态的变化特征及其与ENSO间的关系,并探讨了主要模态的年际变异机理.结果表明,暖池热盐结构盐度场第一模态揭示了盐度场变异的关键区位于暖池中部;该模态具有2~4a的年际变化和准10a的年代际变化,并在1977年前后经历了一次气候跃变(此外,深层盐度场第一模态还在1999年前后发生了一次气候跃变),且在跃变前后与不同类型的ENSO事件有较密切的联系.暖池中部混合层和障碍层盐度的变化比较一致,即在跃变前盐度为偏高期,而在跃变后则变为偏低期.暖池中部深层盐度在1977年以前和1999年之后皆处于偏高期,而在1978~1999年间则处于偏低期.而且,从混合层至深层,盐度的变化幅度逐渐变小.进一步分析表明,暖池中部混合层和障碍层盐度的年际变化主要是由纬向风、南赤道流(SEC)和降水共同引起的,即当东风增强(减弱)时,强(弱)SEC将携带更多(少)的高盐水进入混合层或潜沉至障碍层,同时局地降水的减少(增多),也使得混合层和障碍层的盐度增加(减少);深层盐度的年际变化主要是由SEC和赤道潜流(EUC)导致的,即当SEC增强(减弱)时,将有更多(少)的高盐水进入暖池,而当EUC增强(减弱)时则有更多(少)的低盐水流出暖池,从而使得暖池的深层盐度升高(降低).  相似文献   

17.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号