首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
基于EMD-RVM-Arima的大坝变形预测模型及其应用   总被引:1,自引:0,他引:1  
由于大坝变形监测数据为非平稳、非线性的时间序列,因此采用经验模态分解法(EMD)、相关向量机理论(RVM)以及Arima误差修正模型对大坝变形监测数据进行分析预测。首先利用EMD分解法对原始时间序列进行分解和重构,使原始序列平稳化,得到若干本征模态函数(IMF)以及残差序列,再以RVM预测模型对上述结果进行分析预测,最后利用Arima误差修正模型对预测残差进行误差修正,从而建立了以RVM为基础预测模型的EMD-RVM-Arima大坝变形预测模型。以某双曲拱坝为例,采用该模型对其变形监测数据进行分析预测,得到的平均残差为2. 89 mm,同时计算出SVM、RVM法的平均残差为11. 62 mm、9. 30 mm。可以看出,EMD-RVM-Arima模型大大提高了预测精度,该模型在大坝变形预测中具有可行性。  相似文献   

2.
由于大坝变形监测数据为非平稳、非线性的时间序列,因此采用经验模态分解法( EMD) 、相关向量机理论( RVM) 以及 Arima 误差修正模型对大坝变形监测数据进行分析预测。首先利用 EMD分解法对原始时间序列进行分解和重构,使原始序列平稳化,得到若干本征模态函数( IMF) 以及残差序列,再以 RVM 预测模型对上述结果进行分析预测,最后利用 Arima 误差修正模型对预测残差进行误差修正,从而建立了以 RVM 为基础预测模型的 EMD - RVM - Arima 大坝变形预测模型。以某双曲拱坝为例,采用该模型对其变形监测数据进行分析预测,得到的平均残差为 2. 89 mm,同时计算出SVM、RVM 法的平均残差为 11. 62 mm、9. 30 mm。可以看出,EMD - RVM - Arima 模型大大提高了预测精度,该模型在大坝变形预测中具有可行性。  相似文献   

3.
为改善传统径流预测模型对随机性时间序列的预测效果并不理想的现状,构建基于小波分解及Arima误差修正的径流预测模型。应用小波分解法将径流时间序列进行分解和重构,使非平稳、随机性的径流时间序列平稳化,对数据样本预处理后建立以相关向量机(RVM)为理论基础的径流预测模型,并采用改进粒子群算法进行核函数全局寻优,最后对模型拟合残差进行Arima误差修正。通过实例计算得到传统支持向量机(SVM)模型、RVM模型和径流预测模型的预测值平均误差分别为8.60%,9.02%和3.64%。结果表明:通过小波分解及重构方法对非平稳时间序列的预处理可有效提高预测精度,同时Arima误差修正也有很好的效果,相比于SVM模型、RVM模型,基于小波分解及Arima误差修正的径流预测模型具有更高的预测精度,在实际工程中具有一定的可行性。  相似文献   

4.
针对SVM(Support Vector Machine,支持向量机)存在支持向量个数较多、核函数要求严格等不足,将性能更出色的RVM((Relevance Vector Machine,相关向量机)用于大坝安全预警模型的构建。核函数及其参数对RVM模型的性能有着重要的影响,组合局部核函数和全局核函数的混和核函数能提高模型的拟合精度和泛化能力,利用PSO(Particle Swarm Optimization,粒子群算法)能有效地对核参数进行寻优,针对标准PSO算法容易陷入局部最优点的缺陷,提出IPSO(Improved Particle Swarm Optimization,改进的粒子群算法)。将上述组合算法用于大坝安全模型的建立,实例分析表明,基于上述算法模型的性能得到了一定程度的提高。  相似文献   

5.
大坝监控过程中,大坝变形的实测值是一个非线性且非平稳的时间序列,支持向量机(SVM)适用于解决小样本、非线性问题,在SVM算法的基础上建立了改进的大坝变形监控模型,利用差分自回归移动平均模型(ARIMA)解决非平稳时间序列问题的优势,对SVM模型的残差进行处理,并采用粒子群算法(PSO)优化支持向量机(SVM)中的核函数。实例分析表明,优化后的组合模型预测结果可靠,且精度较SVM模型有所提高。  相似文献   

6.
为提升大坝变形预测能力,提出了一种基于粒子群算法(PSO)优化支持向量机(SVM)的混凝土重力坝变形预测模型.通过粒子群算法对支持向量机惩罚函数C与核函数σ进行寻优,避免了拟合过程中易陷入局部最优解的问题,提高了模型的拟合精度.以新疆北疆某碾压混凝土坝2014年~ 2019年变形监测数据为例,建立了逐步回归、SVM、P...  相似文献   

7.
建立了以经验模态分解法(EMD)和果蝇算法(FOA)优化BP神经网络为基础的EMD-FOA-BP大坝变形预测模型,该模型首先利用EMD将大坝变形序列分解成相对平稳的分量,再根据各分量的特点构造不同FOA-BP模型并进行预测,叠加各分量预测值得到最终预测结果。结果表明,EMD-FOA-BP模型的自适应能力、学习能力及非线性映射能力较强,在大坝变形预测应用中能有效提高精度,预测精度较FOA-BP模型有所提高,且明显优于BP神经网络模型和GA-BP模型。  相似文献   

8.
基于相空间重构的大坝服役性态小波支持向量机预测模型   总被引:2,自引:0,他引:2  
通过支持向量机与相空间重构、小波分析、粒子群算法等的组合应用,充分考虑大坝原型监测数据特征,开展了大坝变形性态预测模型研究。为提升模型的抗噪能性,首先利用小波分析工具对监测数据序列进行时频分解,对分解所得的高频子序列实施阈值去噪处理;进而在借助混沌相空间重构技术,计算各子序列延迟时间与嵌入维数的基础上,重构各子序列的相空间。依据去噪和重构后的变形子序列,建立大坝变形性态支持向量机预测模型。考虑到支持向量机惩罚因子与核函数参数对模型预测精度影响显著的特点,引入粒子群算法,并通过支持向量机的参数寻优,进一步提高了模型的预测精度。工程实例分析表明,相空间重构的大坝变形性态小波支持向量机预测模型具有较强的抗噪和泛化能力,且能够更好地辨识蕴含于大坝原型监测数据中的时频非线性特征,更利于大坝变形性态的精准预测。  相似文献   

9.
为提高大坝变形预测精度,针对大坝变形监测序列的非线性、非平稳性等特点,提出一种基于具有自适应噪声的完整集成经验模态分解(CEEMDAN)-相空间重构(PSR)-核极限学习机(KELM)的大坝变形预测模型。首先利用CEEMDAN算法将大坝变形监测序列分解成为若干不同频率的子序列,然后对各序列进行相空间重构,依据重构的各个子序列分别建立相应的KELM预测模型,最后对各子序列预测结果进行叠加求和得到最终预测结果。通过实例对比分析表明,该模型在大坝变形预测中预测精度较高,对于大坝变形安全监测具有一定的实用价值。  相似文献   

10.
《人民黄河》2014,(5):99-101
大坝变形的实测值序列是一个非线性、非平稳的时间序列,支持向量机引入核函数后能有效解决非线性问题,因此可用支持向量机对大坝变形进行预测。为了提高预测精度,进一步对残差序列进行分析,通过ARIMA模型对残差序列进行预测,建立了SVM-ARIMA组合模型。将大坝变形时间序列分为趋势项和误差项,分别用SVM和ARIMA模型进行预测,综合两项结果得到模型的预测值。结合实测资料对模型进行检验,结果表明组合模型精度较高。  相似文献   

11.
为充分提取大坝变形监测数据的非线性和非平稳性特征,深度挖掘其前后信息的拓扑关系,有效提高预测精度,提出了一种基于二次模态分解和蜣螂优化算法的双向长短期记忆神经网络大坝变形预测模型。该模型引入融合自适应噪声完备集成经验模态分解和变分模态分解的二次模态分解对数据进行预处理,有效降低高频非平稳性分量对预测精度的不利影响,并利用蜣螂优化算法对双向长短期记忆神经网络进行超参数寻优以深度挖掘大坝变形数据的有效信息。以某水电站大坝为例,将该模型预测结果与多种常用模型的预测结果进行对比分析,结果表明该模型可有效挖掘大坝变形数据复杂的非线性特征,其预测精度明显优于对比模型,验证了该模型在大坝变形预测中的可行性与优越性。  相似文献   

12.
大坝变形监测数据序列具有非平稳、非线性特征,是水压、温度和时效综合作用的结果。引入集合经验模态分解(EEMD)方法处理变形数据,在得到多尺度大坝变形分量的基础上,对于其变化复杂的高频分量,采取长短期记忆神经网络(LSTM)以获得较优预测结果;对于周期性变化的低频分量,借助多元线性回归(MLR)实现快捷且有效的预测;最终通过分量重构,得到大坝变形的预测结果。工程实例分析表明:EEMD方法避免了模态混叠现象,可以得到更为合理的多尺度变形分量;LSTM和MLR分别对高、低频分量具有良好的预测能力。将分量叠加重构的最终结果分别与多种单一预测算法、基于EMD的组合算法以及传统模型等预测效果比较表明,基于EEMD-LSTM-MLR的组合预测模型的平均绝对误差(MAE)、平均绝对百分误差(MAPE)及均方根误差(RMSE)均低于上述对比模型,有着更高的预测精度,为大坝变形预测提供了新的思路。  相似文献   

13.
针对大坝位移预测常规方法存在的问题,基于改进粒子群算法的BP神经网络(IPSO-BP)的大坝位移预测方法,通过IPSO对常规BP神经网络的权值和阈值进行优化,弥补了BP网络的不足,保证了预测精度。以2011-12-21—2013-06-27观测得到的某混凝土重力坝某一典型坝段坝顶的顺河向位移值为研究对象,建立基于IPSO-BP的大坝预测模型并进行仿真分析研究。同时,为了验证该模型的拟合及预测效果,建立PSO-BP模型、利用最小二乘法求解参数的统计模型进行对比分析。上述研究结果表明,此模型预测精度优于常规模型且拟合效果好、预测结果的平均相对误差小,说明此方法有效可行。  相似文献   

14.
混凝土坝的总变形可以归结为由水压和温度变化引起的变形以及随时间发展的变形。其中,水压变形和温度变形体现为总变形中的周期性分量,而时效变形体现为总变形中的趋势性分量。借助复合建模思想,提出一种混凝土坝变形Wavelet-EGM-PE-ARIMA组合预测模型。首先利用小波多分辨分析功能,分解出大坝变形时间序列中的趋势性项、周期性项;其次,运用EGM模型实现对趋势性项的有效预测,采用周期外延模型实现对周期性项的有效预测,在此基础上,利用ARIMA模型实现对EGM模型和周期外延模型残差项的有效预测;最后通过某工程实例,检验所提出模型的有效性。计算结果表明:该组合模型充分考虑大坝各变形分量的变化规律,并基于此,实现对大坝变形时间序列有效的拟合和预测,且其拟合和预测精度均明显优于传统统计模型。  相似文献   

15.
为深度挖掘时序数据中前后信息的动态相关性,探究大坝变形的内在影响机理,有效提高模型预测精度,构建了一种基于混合注意力机制与鲸鱼优化算法(WOA)的双向门控循环网络(BiGRU)预测模型。模型利用WOA对BiGRU进行超参数寻优以有效挖掘变形数据在时间维度的深层信息,并引入融合特征注意力(FATT)和时间注意力(TATT)的混合注意力机制计算各影响因子的贡献率,使模型可视化并提高模型捕捉环境因素动态变化的能力。以某高拱坝为例,将该模型预测结果与多种常用模型预测结果进行对比分析,结果表明该模型预测精度显著提升,贡献率计算符合大坝变形研究成果,验证了模型在大坝变形预测中的优越性与合理性。  相似文献   

16.
为了提高混凝土坝位移趋势的预测精度,提出了一种基于主成分分析( PCA) 和径向基( RBF) 神经网络的混凝土坝位移趋势性预测模型( PCA - RBF) 。首先,利用主成分分析,将混凝土坝多测点 的径向位移监测数据降维,消除影响分量数据集的多重相关性,分别提取出主元位移和主元影响分 量。然后,把主元位移和主元影响分量输入径向基神经网络并构建模型,对提取出的主元位移进行预 测。最后,将本法应用于某混凝土坝,结果表明,PCA - RBF 模型的均方根误差( RMSE) ,平均绝对 误差( MAE) 和平均绝对百分比误差( MAPE) 分别为 2. 037 8 mm,1. 698 6 mm 和 3. 32% ,显著低于传 统的多元回归统计模型、径向基神经网络模型( RBF) 和利用经主成分分析进行因子处理的 BP 神经网 络模型( PCA - BP) ,说明 PCA - RBF 模型有着良好的预测精度。  相似文献   

17.
大坝变形是水压、温度等多种因素综合作用的结果,变形监测数据是非平稳非线性的时间序列,并且在时间维度上具有关联性。为充分挖掘变形监测数据在长短时间跨度上的关联性,提出了应用长短期记忆网络(LSTM)预测大坝变形的方法。为进一步提升预测精度,利用自回归差分移动平均模型(Arima)对预测残差进行误差修正,从而建立基于LSTM-Arima的大坝变形组合预测模型。以某混凝土重力坝为例,将组合模型的预测结果与Arima模型、支持向量机(SVM)的预测结果进行对比分析。结果表明LSTM-Arima的预测结果优于Arima模型和SVM的预测结果,LSTM-Arima的均方根误差(RMSE) 比Arima模型和SVM分别降低了40.65%和59.00%,平均绝对误差(MAE)分别降低了35.49%和55.60%,表明LSTM-Arima模型具有较高的预测精度。研究成果对于更精确地开展大坝变形预测有一定参考价值。  相似文献   

18.
我国库岸滑坡灾害频发,采用高精度优化算法对边坡位移时间序列进行预测对防灾减灾具有重要意义。边坡位移时间序列通常表现出高度非线性特征,传统模型难以对其进行准确预测。为此,本文提出一种基于优化经验模态分解和最小二乘支持向量机的边坡位移时间序列预测模型。该模型采用基于软筛分停止准则的经验模态分解(SSSC-EMD),可自适应地将边坡位移时间序列分解为多个本征模态分量和1 个残余分量。将残余分量定义为趋势项;通过K-means 聚类方法对分量进行聚类,将其定义为周期项和随机项。采用最小二乘法对趋势项进行预测;建立最小二乘支持向量机回归(LSSVM)模型对周期项和随机项进行预测。将各预测值累加求和,即得到累计位移预测值。以山口岩大坝为例,采用SSSCEMD-LSSVM 模型对厂址边坡位移时间序列进行预测。结果表明:模型能够有效预测位移时间序列,精度优于传统BP 神经网络和LSSVM 模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号