首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We consider the Cauchy problem of isentropic compressible magnetohydrodynamic equations with large potential force in . When the initial data (ρ0,u0,H0) is of small energy, we investigate the global well‐posedness of classical solutions where the flow density is allowed to contain vacuum states.  相似文献   

2.
3.
The formation of vacuum state and delta shock wave in the solutions to the Riemann problem for the simplified pressureless Euler system is considered under the linear approximations of flux functions. The method is to perturb the non‐strictly hyperbolic system into a nearby strictly hyperbolic system by introducing appropriately the linear approximations of flux functions. The solutions to the Riemann problem for the approximated system can be constructed explicitly and then the formation of vacuum state and delta shock wave can be observed by taking the perturbation parameter tend to zero in the solutions.  相似文献   

4.
In this paper we investigate the two-dimensional compressible isentropic Euler equations for Chaplygin gases. Under the assumption that the initial data is close to a constant state and the vorticity of the initial velocity vanishes, we prove the global existence of the smooth solution to the Cauchy problem for twodimensional flow of Chaplygin gases.  相似文献   

5.
We study the motion of isentropic gas in nozzles. This is a major subject in fluid dynamics. In fact, the nozzle is utilized to increase the thrust of rocket engines. Moreover, the nozzle flow is closely related to astrophysics. These phenomena are governed by the compressible Euler equations, which are one of crucial equations in inhomogeneous conservation laws.In this paper, we consider its unsteady flow and devote to proving the global existence and stability of solutions to the Cauchy problem for the general nozzle. The theorem has been proved in Tsuge (2013). However, this result is limited to small data. Our aim in the present paper is to remove this restriction, that is, we consider large data. Although the subject is important in Mathematics, Physics and engineering, it remained open for a long time. The problem seems to rely on a bounded estimate of approximate solutions, because we have only method to investigate the behavior with respect to the time variable. To solve this, we first introduce a generalized invariant region. Compared with the existing ones, its upper and lower bounds are extended constants to functions of the space variable. However, we cannot apply the new invariant region to the traditional difference method. Therefore, we invent the modified Godunov scheme. The approximate solutions consist of some functions corresponding to the upper and lower bounds of the invariant regions. These methods enable us to investigate the behavior of approximate solutions with respect to the space variable. The ideas are also applicable to other nonlinear problems involving similar difficulties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号