首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于1961~2013年观测资料和第六次国际耦合模式比较计划(CMIP6)中32个气候模式的最低气温数据,评估了各模式及多模式集合平均方法对中国冬季寒潮频次的模拟能力,并筛选了中国不同区域的最优模式,为中国未来寒潮频次预估和气候模式改进提供理论支撑。结果表明,CMIP6全球气候模式可以很好地再现出中国冬季寒潮频次由北向南逐级递减的空间特征,EC-Earth3-Veg对中国寒潮频次模拟能力最好;绝大多数模式可以模拟出中国冬季寒潮频次下降的趋势,但对趋势变化幅度的模拟能力则相对有限。多模式等权重集合平均和多模式中位数集合平均较单一模式分别对中国北方地区和南方地区冬季寒潮频次空间格局的模拟效果改进显著,但是对趋势值的模拟普遍偏低。  相似文献   

2.
CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较   总被引:5,自引:0,他引:5  
利用CRUT3v和CN05两套观测资料,评估25个CMIP5模式对1906-2005年中国年平均气温变化的模拟能力,并与CMIP3模式对比。结果表明:1906-2005年中国平均温升速率为0.84℃/100a,CMIP5多模式集合平均模拟的增温率为0.77℃/100a。模式对20世纪后期温升模拟好于前期,仅有两个模式能模拟中国20世纪40年代异常增暖。模式对气温气候态空间分布模拟较好,但在中国西部地区存在最大模拟冷偏差和不确定性。1961-1999年,中国北方增暖大于南方。多模式集合平均可以较好地模拟气温变化线性趋势的空间分布,但对南北气温变化趋势的差异模拟过小。总体说来,在中国平均气温变化趋势、气温气候态空间分布和气温变化趋势空间分布三方面,CMIP5模式都较CMIP3模式有所提高。  相似文献   

3.
8个CMIP5模式对中国极端气温的模拟和预估   总被引:14,自引:0,他引:14  
利用8个耦合模式比较计划第五阶段(CMIP5)模式结果,采用加权平均方法进行多模式集合,并与NCEP再分析资料进行对比分析,评估了CMIP5模式对中国极端气温的模拟效果,在此基础上,对未来极端气温进行预估。CMIP5模式对中国8个极端气温指数和20年一遇最高(低)气温有模拟能力,所有极端气温指数模拟和观测结果的时间相关均达到0.10显著性水平,20年一遇最高、最低气温模拟和观测结果空间相关系数均超过0.98。在中等排放RCP4.5情景下,未来中国极暖(冷)日数增多(减少),到21世纪中期热浪指数增加2.6倍,到21世纪末期寒潮指数减少71%,20年一遇最高(低)气温在中国地区均呈现升高趋势,局部升温幅度达到4℃。  相似文献   

4.
Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. This paper investigates recent changes in temperature extremes in China using 25 state-of-the-art global climate models participating in CMIP5. Thirteen indices that represent extreme temperature events were chosen and derived by daily maximum and minimum temperatures, including those representing the intensity (absolute indices and threshold indices), duration (duration indices), and frequency (percentile indices) of extreme temperature. The overall performance of each model is summarized by a "portrait" diagram based on relative root-mean-square error, which is the RMSE relative to the median RMSE of all models, revealing the multi-model ensemble simulation to be better than individual model for most indices. Compared with observations, the models are able to capture the main features of the spatial distribution of extreme temperature during 1986-2005. Overall, the CMIP5 models are able to depict the observed indices well, and the spatial structure of the ensemble result is better for threshold indices than frequency indices. The spread amongst the CMIP5 models in different subregions for intensity indices is small and the median CMIP5 is close to observations; however, for the duration and frequency indices there can be wide disagreement regarding the change between models and observations in some regions. The model ensemble also performs well in reproducing the observational trend of temperature extremes. All absolute indices increase over China during 1961-2005.  相似文献   

5.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations.  相似文献   

6.
利用CMIP5耦合气候模式的模拟结果,分析了不同排放情景下1.5℃和2℃升温阈值出现的时间。多模式集合平均结果表明:RCP2.6、RCP4.5和RCP8.5排放情景下,全球地表温度将分别在2029年、2028年和2025年达到1.5℃升温阈值;RCP2.6情景下直至21世纪末期都未达到2℃升温阈值,RCP4.5和RCP8.5排放情景下达到2℃升温阈值的时间分别为2048年和2040年。伴随着排放情景的升高,完成从1.5℃升温阈值到2℃升温阈值所需要的时间缩短。区域尺度上,达到同一升温阈值的时间主要表现为陆地比海洋早,且陆地对排放情景差异的敏感性相对较差,而海洋达到升温阈值的时间则随着排放情景的升高而明显提前。中国达到相应升温阈值的时间要早于全球,且以东北和西北地区出现的时间最早。  相似文献   

7.
This is the second part of the authors’ analysis on the output of 24 coupled climate models from the Twentieth-Century Climate in Coupled Models (20C3M) experiment and 1% per year CO 2 increase experiment (to doubling) (1pctto2x) of phase 3 of the Coupled Model Inter-comparison Project (CMIP3). The study focuses on the potential changes of July–August temperature extremes over China. The pattern correlation coefficients of the simulated temperature with the observations are 0.6–0.9, which are higher than the results for precipitation. However, most models have cold bias compared to observation, with a larger cold bias over western China (>5°C) than over eastern China (<2°C). The multi-model ensemble (MME) exhibits a significant increase of temperature under the 1pctto2x scenario. The amplitude of the MME warming shows a northwest–southeast decreasing gradient. The warming spread among the models (~1°C– 2°C) is less than MME warming (~2°C–4°C), indicating a relatively robust temperature change under CO 2 doubling. Further analysis of Geophysical Fluid Dynamics Laboratory coupled climate model version 2.1 (GFDL-CM2.1) simulations suggests that the warming pattern may be related to heat transport by summer monsoons. The contrast of cloud effects also has contributions. The different vertical structures of warming over northwestern China and southeastern China may be attributed to the different natures of vertical circulations. The deep, moist convection over southeastern China is an effective mechanism for "transporting" the warming upward, leading to more upper-level warming. In northwestern China, the warming is more surface-orientated, possibly due to the shallow, dry convection.  相似文献   

8.
ENSO representation in climate models: from CMIP3 to CMIP5   总被引:4,自引:2,他引:2  
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.  相似文献   

9.
基于CMIP6的16个全球模式试验数据,多模式集合预估了《巴黎协定》1.5°C/2°C温升目标下“一带一路”倡议的主要陆域未来气温和降水变化。与观测相比较,多模式集合能够比较准确地刻画“一带一路”主要陆域1995~2014年气温和降水的空间结构特征。在SSP2-4.5、SSP3-7.0和SSP5-8.5三种不同路径情景下,相对于工业革命前(1850~1900年),全球升温1.5°C与2°C分别将发生在2020年代中后期与2040年左右。全球1.5°C与2°C温升目标下,预计“一带一路”陆域平均的气温分别显著升高1.84°C和2.43°C,两者相差0.59°C,模式间标准差分别为0.18°C和0.21°C;区域平均的降水分别显著增加20.14 mm/a和30.02 mm/a,相差9.88 mm/a,模式间标准差分别为10.79 mm/a和13.72 mm/a。两种温升目标下,“一带一路”主要陆域气温空间上均表现为一致性显著增暖,高纬度的增温幅度普遍比低纬度大;降水变化具有明显的空间差异性,地中海与黑海地区、中国南部至中南半岛地区减少,其他地区的降水普遍增加。P-E指数表征的干旱化未来在欧洲地区、中国南部至中南半岛地区、南亚印度东部地区、东南亚和赤道非洲中部地区达到最大。  相似文献   

10.
The MIT 2D climate model is used to make probabilistic projections for changes in global mean surface temperature and for thermosteric sea level rise under a variety of forcing scenarios. The uncertainties in climate sensitivity and rate of heat uptake by the deep ocean are quantified by using the probability distributions derived from observed twentieth century temperature changes. The impact on climate change projections of using the smallest and largest estimates of twentieth century deep ocean warming is explored. The impact is large in the case of global mean thermosteric sea level rise. In the MIT reference (“business as usual”) scenario the median rise by 2100 is 27 and 43 cm in the respective cases. The impact on increases in global mean surface air temperature is more modest, 4.9 and 3.9 C in the two respective cases, because of the correlation between climate sensitivity and ocean heat uptake required by twentieth century surface and upper air temperature changes. The results are also compared with the projections made by the IPCC AR4’s multi-model ensemble for several of the SRES scenarios. The multi-model projections are more consistent with the MIT projections based on the largest estimate of ocean warming. However, the range for the rate of heat uptake by the ocean suggested by the lowest estimate of ocean warming is more consistent with the range suggested by the twentieth century changes in surface and upper air temperatures, combined with the expert prior for climate sensitivity.  相似文献   

11.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   

12.
Changes in temperature and precipitation extremes in the CMIP5 ensemble   总被引:6,自引:1,他引:5  
Twenty-year temperature and precipitation extremes and their projected future changes are evaluated in an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), updating a similar study based on the CMIP3 ensemble. The projected changes are documented for three radiative forcing scenarios. The performance of the CMIP5 models in simulating 20-year temperature and precipitation extremes is comparable to that of the CMIP3 ensemble. The models simulate late 20th century warm extremes reasonably well, compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally larger than those for warm extremes. Simulated late 20th century precipitation extremes are plausible in the extratropics but uncertainty in extreme precipitation in the tropics and subtropics remains very large, both in the models and the observationally-constrained datasets. Consistent with CMIP3 results, CMIP5 cold extremes generally warm faster than warm extremes, mainly in regions where snow and sea-ice retreat with global warming. There are tropical and subtropical regions where warming rates of warm extremes exceed those of cold extremes. Relative changes in the intensity of precipitation extremes generally exceed relative changes in annual mean precipitation. The corresponding waiting times for late 20th century extreme precipitation events are reduced almost everywhere, except for a few subtropical regions. The CMIP5 planetary sensitivity in extreme precipitation is about 6 %/°C, with generally lower values over extratropical land.  相似文献   

13.
This study presents projections of twenty-first century wintertime surface temperature changes over the high-latitude regions based on the third Coupled Model Inter-comparison Project (CMIP3) multi-model ensemble. The state-dependence of the climate change response on the present day mean state is captured using a simple yet robust ensemble linear regression model. The ensemble regression approach gives different and more precise estimated mean responses compared to the ensemble mean approach. Over the Arctic in January, ensemble regression gives less warming than the ensemble mean along the boundary between sea ice and open ocean (sea ice edge). Most notably, the results show 3?°C less warming over the Barents Sea (~7?°C compared to ~10?°C). In addition, the ensemble regression method gives projections that are 30?% more precise over the Sea of Okhostk, Bering Sea and Labrador Sea. For the Antarctic in winter (July) the ensemble regression method gives 2?°C more warming over the Southern Ocean close to the Greenwich Meridian (~7?°C compared to ~5?°C). Projection uncertainty was almost half that of the ensemble mean uncertainty over the Southern Ocean between 30° W to 90° E and 30?% less over the northern Antarctic Peninsula. The ensemble regression model avoids the need for explicit ad hoc weighting of models and exploits the whole ensemble to objectively identify overly influential outlier models. Bootstrap resampling shows that maximum precision over the Southern Ocean can be obtained with ensembles having as few as only six climate models.  相似文献   

14.
Stolpe  Martin B.  Cowtan  Kevin  Medhaug  Iselin  Knutti  Reto 《Climate Dynamics》2021,56(1-2):613-634

Global mean temperature change simulated by climate models deviates from the observed temperature increase during decadal-scale periods in the past. In particular, warming during the ‘global warming hiatus’ in the early twenty-first century appears overestimated in CMIP5 and CMIP6 multi-model means. We examine the role of equatorial Pacific variability in these divergences since 1950 by comparing 18 studies that quantify the Pacific contribution to the ‘hiatus’ and earlier periods and by investigating the reasons for differing results. During the ‘global warming hiatus’ from 1992 to 2012, the estimated contributions differ by a factor of five, with multiple linear regression approaches generally indicating a smaller contribution of Pacific variability to global temperature than climate model experiments where the simulated tropical Pacific sea surface temperature (SST) or wind stress anomalies are nudged towards observations. These so-called pacemaker experiments suggest that the ‘hiatus’ is fully explained and possibly over-explained by Pacific variability. Most of the spread across the studies can be attributed to two factors: neglecting the forced signal in tropical Pacific SST, which is often the case in multiple regression studies but not in pacemaker experiments, underestimates the Pacific contribution to global temperature change by a factor of two during the ‘hiatus’; the sensitivity with which the global temperature responds to Pacific variability varies by a factor of two between models on a decadal time scale, questioning the robustness of single model pacemaker experiments. Once we have accounted for these factors, the CMIP5 mean warming adjusted for Pacific variability reproduces the observed annual global mean temperature closely, with a correlation coefficient of 0.985 from 1950 to 2018. The CMIP6 ensemble performs less favourably but improves if the models with the highest transient climate response are omitted from the ensemble mean.

  相似文献   

15.
The trends and fluctuations of observed and CMIP5-simulated yearly mean surface air temperature over China were analyzed.In general,the historical simulations replicate the observed increase of temperature,but the multi-model ensemble (MME) mean does not accurately reproduce the drastic interannual fluctuations.The correlation coefficient of the MME mean with the observations over all runs and all models was 0.77,which was larger than the largest value (0.65) from any single model ensemble.The results showed that winter temperatures are increasing at a higher rate than summer temperatures,and that winter temperatures exhibit stronger interannual variations.It was also found that the models underestimate the differences between winter and summer rates.The ensemble empirical mode decomposition technique was used to obtain six intrinsic mode functions (IMFs) for the modeled temperature and observations.The periods of the first two IMFs of the MME mean were 3.2 and 7.2,which represented the cycle of 2-7-yr oscillations.The periods of the third and fourth IMFs were 14.7 and 35.2,which reflected a multi-decadal oscillation of climate change.The corresponding periods of the first four IMFs were 2.69,7.24,16.15 and 52.5 in the observed data.The models overestimate the period of low frequency oscillation of temperature,but underestimate the period of high frequency variation.The warming rates from different representative concentration pathways (RCPs) were calculated,and the results showed that the temperature will increase by approximately 0.9℃,2.4℃,3.2℃ and 6.1℃ in the next century under the RCP2.6,RCP4.5,RCP6.0 and RCP8.5 scenarios,respectively.  相似文献   

16.
Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m?2, consistent with models’ deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the warm SST bias via vertical heat advection. Third, SETA SST biases in CMIP5 models are correlated with surface and subsurface ocean temperature biases in the equatorial region, suggesting that the equatorial temperature bias remotely contributes to the SETA SST bias. Finally, we found that all CMIP5 models simulate a southward displaced Angola–Benguela front (ABF), which in many models is more than 10° south of its observed location. Furthermore, SETA SST biases are most significantly correlated with ABF latitude, which suggests that the inability of CMIP5 models to accurately simulate the ABF is a leading cause of the SETA SST bias. This is supported by simulations with the oceanic component of one of the CMIP5 models, which is forced with observationally derived surface fluxes. The results show that even with the observationally derived surface atmospheric forcing, the ocean model generates a significant warm SST bias near the ABF, underlining the important role of ocean dynamics in SETA SST bias problem. Further model simulations were conducted to address the impact of the SETA SST biases. The results indicate a significant remote influence of the SETA SST bias on global model simulations of tropical climate, underscoring the importance and urgency to reduce the SETA SST bias in global climate models.  相似文献   

17.
Daily output from the PRUDENCE ensemble of regional climate simulations for the end of the twentieth and twenty-first centuries over Europe is used to show that the increasing intensity of the most damaging summer heat waves over Central Europe is mostly due to higher base summer temperatures. In this context, base temperature is defined as the mean of the seasonal cycle component for those calendar days when regional heat waves occur and is close, albeit not identical, to the mean temperature for July–August. Although 36–47% of future Central Europe July and August days at the end of the twenty-first century are projected to be extreme according to the present day climatology, specific changes in deseasonalized heat wave anomalies are projected to be relatively small. Instead, changes in summer base temperatures appear much larger, clearly identifiable and of the same order of magnitude as changes in the whole magnitude of heat waves. Our results bear important consequences for the predictability of central European heat wave intensity under global warming conditions.  相似文献   

18.
The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86°C relative to the pre-industrial level, achieving the target to limit the global warming to 2°C. Associated with the “increase-peak-decline” greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006–55 and cooling during 2056–2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006–55 is distributed globally, while the cooling during 2056–2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period.  相似文献   

19.
We review the ideas behind the pattern scaling technique, and focus on its value and limitations given its use for impact assessment and within integrated assessment models. We present estimates of patterns for temperature and precipitation change from the latest transient simulations available from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), focusing on multi-model mean patterns, and characterizing the sources of variability of these patterns across models and scenarios. The patterns are compared to those obtained from the previous set of experiments, under CMIP3. We estimate the significance of the emerging differences between CMIP3 and CMIP5 results through a bootstrap exercise, while also taking into account the fundamental differences in scenario and model ensemble composition. All in all, the robustness of the geographical features in patterns of temperature and precipitation, when computed as multi-model means, is confirmed by this comparison. The intensity of the change (in both the warmer and cooler areas with respect to global temperature change, and the drier and wetter regions) is overall heightened per degree of global warming in the ensemble mean of the new simulations. The presence of stabilized scenarios in the new set of simulations allows investigation of the performance of the technique once the system has gotten close to equilibrium. Overall, the well established validity of the technique in approximating the forced signal of change under increasing concentrations of greenhouse gases is confirmed.  相似文献   

20.
Uncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号