首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对高强度开采综放工作面区段煤柱合理宽度留设问题,以羊场湾煤矿为工程背景,建立了综放工作面侧向基本顶破断结构模型,推导出低应力区范围表达式及其影响因素;采用FLAC3D数值模拟软件分析巷道掘进和本工作面回采期间不同煤柱宽度下巷道围岩应力与位移演化特征。研究表明:(1)高强度开采综放工作面因采场尺寸大、推进速度快、断裂步距大,导致内应力场范围亦大于常规工作面。(2)高强度开采综放工作面区段煤柱宽度的确定,应充分考虑多次剧烈采动、基本顶破断、巷道大断面等因素,结合试验工作面地质生产条件确定内应力场范围6.31~7.58 m,合理煤柱宽度为9~14 m。(3)本工作面回采期间,覆岩结构被再次激活,致使围岩变形破坏加剧,煤柱宽度10~14 m时,煤柱具有一定自稳能力并承担较少的顶板载荷,综合考虑各因素确定合理煤柱宽度为10 m。(4)受高强度开采及基本顶破断等因素影响,窄煤柱沿空巷道可能诱发大范围破碎、煤柱帮大变形及顶板不对称下沉等变形破坏,要实现此类巷道围岩稳定性控制应对煤柱帮和顶板重点加固,据此,提出了非对称围岩控制技术,并进行现场应用,巷道控制效果明显。  相似文献   

2.
高健铭  韩长路 《陕西煤炭》2022,(2):87-90,145
黄陵一号煤矿智能化无人开采技术成功应用后,对巷道围岩支护提出新要求,首先要为智能化设备运行提供良好的开采条件,回采巷道实现"一次支护,永不返修"的目标,满足智能化开采需求;其次,回采巷道要能满足矿井综采工作面安全生产要求,保证矿井采、掘接续平衡,综合考虑回采巷道掘进、支护时间在每循环作业过程中占比较大,因此考虑在回采巷...  相似文献   

3.
针对目前在孤岛工作面开采时煤炭资源浪费、回采时巷道变形严重、工作面不稳定等问题,运用UDEC2D3.1模拟软件,对阳泉二矿80509综放孤岛工作面沿空侧不同宽度条件下煤柱的应力分布规律及巷道围岩的稳定性进行模拟,认定在煤柱宽度为5.5 m条件下,巷道围岩变形最优,可以满足工作面正常生产的需求。  相似文献   

4.
沿空掘进巷道必须使巷道处于合理的支护状态,才能保证安全生产。以某矿C3-5号层二盘区8204工作面巨厚煤层综放工作面小煤柱留设为背景,通过理论分析计算了沿空掘巷小煤柱合理宽度,针对综放回采巷道围岩的变形大、支护难等特点,提出合理支护方案。通过对巷道围岩变形情况进行分析,得出综放工作面沿空掘巷的围岩控制措施与6m宽窄煤柱沿空掘巷综放开采方案是可行的。  相似文献   

5.
陈晓祥  王逸良  张天 《煤矿安全》2020,51(6):66-71,76
为解决迎采对掘窄煤柱护巷围岩变形大、支护困难的问题,以高平七一煤业9104工作面运输巷为例,采用现场调研、数值模拟和工业性试验相结合的方法,对迎采对掘期间巷道围岩变形规律、煤柱尺寸及相应支护参数的确定进行了研究。结果表明:随着煤柱宽度的增加,巷道围岩变形量及煤柱内的应力分布特征呈现出明显的差异性,并基于此确定了七一煤业9104工作面运输巷合理煤柱宽度为5 m;迎采对掘动压巷道围岩位移调整过程主要集中在掘进工作面和临近回采工作面相遇前方20 m至后方100 m处,此阶段的巷道变形量约占总变形量的70.5%左右。工业性试验研究表明:5 m窄煤柱护巷及优化后的支护参数,能够有效控制巷道围岩变形,基本保证了巷道在其服务年限内的正常使用。  相似文献   

6.
塔山煤矿工作面原有设计采用预留宽煤柱的方式,通过井下回采实践表明,此煤柱留设方式会造成煤炭资源损失率高达26%,且不利于巷道围岩的维护,工作面开采过程中明显发现巷道受到应力挤压导致的围岩变形现象,并且巷道冒顶现象时有发生。基于上述背景,采取理论计算结合数值模拟推演计算的分析方法,明确了适合塔山煤矿赋存条件的8117综放工作面煤柱宽度为8 m。8117综放工作面通过采用留设小煤柱技术以来,有效地避免了宽大煤柱引起的围岩移进量大,进而导致巷道围岩变形严重的问题,且将煤炭损失率降低至12%,避免了煤炭资源的浪费。  相似文献   

7.
斜沟煤矿23105综放孤岛工作面开采的13号煤层平均厚度达14.5 m,切眼掘宽9.3 m,掘高3.8 m,跨度较大,易造成巷道漏顶.对特厚煤层大断面切眼成巷后压力与变形特征进行了分析,提出了第一次成巷宽度4.6 m、第二次成巷宽度4.7 m的分次成巷施工方案,并及时在巷道中部施工组合锚索,避免了切眼中部集中受力,有效发挥组合梁理论的优势,取得了较好的支护效果.  相似文献   

8.
针对千米深井强矿压煤层条件巷道支护难题,以新河煤矿3#煤层综放工作面开采实践为基础,模拟分析了宽度为5 m的小煤柱沿空掘巷侧向支承压力及煤柱应力分布规律,分析计算了合理的巷道断面尺寸及支护参数,进行了工作面超前支承压力及小煤柱应力分布规律的现场监测分析。研究结果表明:沿空巷道掘进后小煤柱应力分布呈现两侧压力降低、中间压力增高的趋势,工作面超前支承压力峰值位于工作面前方约20 m处,采空区侧超前支护范围应大于30 m,确定沿空巷道断面尺寸为4.5 m×3.8 m,小煤柱留设尺寸、巷道断面及支护参数满足巷道围岩控制要求。  相似文献   

9.
以酸刺沟煤矿6上特厚煤层大采高综放回采巷道支护为工程背景,基于井下地质力学实测结果,采用数值模拟方法,对比分析了酸刺沟煤矿6上煤层不同煤柱宽度和不同巷道断面尺寸下煤岩体的受力、变形及破坏特征。研究结果表明:6上煤层顶板结构较为单一,以粗砂岩为主,不同位置强度不同,大多在40~80MPa之间,巷帮煤体平均抗压强度为19.80MPa,所测测站中最大水平主应力为7.94MPa,总体处于较低的应力水平;煤柱宽度由15m增加到20m时,巷道变形减小最为显著;煤柱宽度由25m增大到30m时,巷道变形减小趋势变得不明显;巷道掘进与工作面回采阶段巷道围岩应力随宽度增加的变化趋势相同,随着巷道宽度的增加,巷帮垂直应力呈线性增加,巷道顶板的水平应力呈线性减小。基于上述结论,对酸刺沟煤矿6上煤层1109胶运巷进行了支护设计与井下试验,工作面回采后巷道断面收缩率小于15%,实现了特厚顶煤大断面强采动围岩变形的有效控制。  相似文献   

10.
为解决深井大采高工作面留设大煤柱导致回收率低的难题,运用理论计算、数值分析及现场工程实测的方法,研究了深井大采高工作面开采条件下不同煤柱宽度时煤柱两侧塑性区分布和采掘扰动对巷道变形的影响,得到窄煤柱的合理尺寸。结果表明:确定合理煤柱尺寸时应充分考虑煤柱自身稳定性和采掘影响下巷道围岩变形量;掘进期间沿空掘5~6 m宽煤柱时破碎严重,煤柱宽度至少7 m才能达到自身稳定要求,而回采期间煤柱宽度至少需8 m,此时巷道围岩变形量相对较小,综合确定煤柱宽度8 m为最优方案。现场监测表明:11030工作面进风平巷两帮最大变形量为1 210 mm,顶底板最大变形量为620 mm,能够满足安全生产要求。  相似文献   

11.
煤柱宽度对综放回采巷道围岩力学特征影响分析   总被引:2,自引:0,他引:2  
依据谢桥煤矿1151(3)综放工作面工程地质及开采技术条件,在对影响该条件回采巷道护巷煤柱宽度的因素分析基础上,应用计算机数值模拟(FLAC2D),模拟并分析了不同煤柱宽度煤柱及巷道围岩在回采期间的应力分布及变形情况,获得了不同煤柱宽度巷道围岩在回采期间的力学特征,为综放开采回采巷道煤柱宽度的合理留设、支护参数选择、巷道围岩稳定性控制及安全生产提供理论依据。  相似文献   

12.
为进一步提升煤矿智能化开采技术装备水平,引领行业智能化开采技术科学发展,实现煤炭行业在新时代下的升级转型,结合陕煤集团黄陵矿业公司智能化无人开采成功实践经验,重点研究了复杂地质条件下薄煤层、中厚煤层和厚煤层智能化开采实践技术,得到了中厚及较薄煤层智能化无人综采的关键技术是液压支架全工作面跟机自动化与远程人工干预技术、采煤机全工作面记忆截割与远程人工干预技术、综采自动化集中控制技术、工作面视频监控技术、智能化集成供液控制技术和超前支护自动控制技术;厚煤层智能化无人综采的关键技术是大采高工作面防片帮智能控制技术、大采高工作面底软智能控制技术、大采高工作面高清晰视频监控技术和大采高工作面环境安全保障技术;得出了煤矿智能化无人开采支撑体系建设分为科技创新、信息化标准、安全保障技术、企业精细化管理和员工素质提升工程五大体系;提出了通过提高整体技术创新性与适应性和提高装备的可靠性与适应性方面的攻关研究,是不断推动煤炭智能化无人开采技术向智能开采高级阶段迈进的努力途径。最后,分析了目前国内外智能化无人开采技术应用现状及推广制约因素,并结合人工智能及新一代工业革命发展方向对煤炭智能开采技术进行了展望。  相似文献   

13.
基于黄陵一号煤矿十盘区1.4~2.2m较薄煤层首个智能化无人工作面开采的实践和总结,针对八盘区1.8~2.8m煤层设计了升级版智能化无人开采工作面系统集成配套方案,优化并完善了工作面智能化控制系统,应用高清摄像仪、高精度行程传感器和调控装置实现工作面割煤高度和直线度精准控制;应用高速截割采煤机和智能型刮板输送机实现采运双向协同控制;通过设计开发新型电液控制系统,实现工作面巷道带式输送机自移机尾、转载机自移、超前支架的自动化远程控制;该系统可实现工作面和巷道内成套装备智能化协同控制和采煤全过程自动化无人生产,系统具备年产400万t的生产能力。  相似文献   

14.
厚煤层放顶煤开采实践中,区段煤柱留设宽度与巷道围岩的稳定性相关性极大,区段煤柱留设较小时巷道围岩稳定性较差,受回采影响易发生巷帮外挤、顶板冒落等事故,而煤柱宽度留设过大则造成资源极大浪费.以高河煤矿西一盘区为工程背景,理论分析了巷道围岩变形大的原因,采用数值模拟的方法研究了采空区侧向的应力分布特征、位移变形规律、破坏特征.现场监测数据表明,工作面超前90m 范围外围岩变形缓慢,巷道顶底板及两帮最大变形量均小于50mm,超前工作面90m 的影响范围内,巷道受到超前集中应力影响而变形剧烈;巷道顶、底板移近量最大为848mm,两帮移近量最大为583 mm,区段煤柱优化后,巷道变形较优化 前 有 了 显 著 的 降 低,巷 道 顶、底 板 移 近 量 降 低 了43.76%,两帮移近量降低了35.93%,综合考虑资源回收、巷道稳定性、次生灾害控制等因素,确定厚煤层综放工作面区段煤柱宽度为 32m.  相似文献   

15.
大采高综放开采几个理论问题的研究   总被引:17,自引:1,他引:16       下载免费PDF全文
闫少宏  尹希文 《煤炭学报》2008,33(5):481-484
提出大采高综放开采的概念,对大采高综放开采主要基础理论问题如:大采高综放开采工作面参数的确定、煤壁片帮冒顶机理与防治、提高工作面煤炭采出率、大断面高煤帮巷道支护、围岩活动规律与特种综放支架研发进行了探讨,以期推动这一技术的发展.  相似文献   

16.
《煤矿安全》2013,(9):107-109
针对厚煤层综放工作面开采与沿空掘巷形成的采动及采空区交错重复动压影响问题,结合付村煤业有限公司3上408综放工作面的开采特征,采用理论分析和数值模拟相结合的方法,研究了厚煤层沿空动压巷道围岩变形特征,并提出锚梯网(锚索)联合支护方案,通过对厚煤层沿空巷道锚杆应力、围岩变形实测,结果表明:厚煤层沿空巷道宽度收缩率为1.4%,高度收缩率仅为1.2%,达到围岩控制要求,保证巷道正常使用。  相似文献   

17.
综掘工作面降尘效率影响因素试验研究   总被引:1,自引:0,他引:1  
针对煤矿开采过程中综掘工作面产生大量粉尘的问题,在实验室建立了基于旋流通风的综掘工作面通风系统,并研究了旋流通风系统中压、抽风筒风口位置和压抽比等关键影响因素对综掘工作面降尘效率的影响.研究结果表明:综掘工作面旋流通风系统可在掘进机司机前方形成基本封闭整个巷道断面的旋流气幕,能有效防止粉尘向其他区域扩散.压抽比一定时,适当地按比例增加压入风量和抽出风量有利于改善旋流通风系统的降尘效果.对于断面积12 m2左右的巷道,合理的压、抽风筒风口至掘进工作面距离分别为17 m、2 m;合理的压抽比为0.9 ~1.2.  相似文献   

18.
为解决灵东煤矿特厚煤层综放开采巷道剧烈变形的问题,采用钻孔应力监测系统对煤柱内围岩应力分布状态进行了实测分析,并以邻空巷道围岩变形特征为基础,分析了特厚煤层综放开采巷道剧烈变形的影响因素,确定了以应力环境优化+支护强化为原则的特厚煤层综放开采邻空巷道围岩控制技术。研究结果表明巷道布置位置、巷道掘进时机、围岩支护强度及支护质量为邻空巷道围岩控制的关键影响因素。为有效控制邻空巷道围岩剧烈变形,需将巷道布置在应力降低区,区段煤柱合理宽度应为8~9.5 m;巷道应在采空区侧向顶板活动稳定后方可进行掘进;加强巷帮围岩支护。  相似文献   

19.
针对长壁工作面过断层时存在产量低、煤质差、工期长及安全系数低等问题,提出了预掘巷道群快速过断层技术,即在考虑断层落差、工作面开采条件及支架稳定性的基础上,确定出大倾角综放面过断层的"预想层位",并在此层位上预掘若干条巷道(巷道群),使工作面连续推过预掘巷道群过断层。此项技术的关键为:1)预掘巷道群围岩控制技术,包括其布置方式、预掘巷间岩柱尺寸及支护参数等;2)大倾角综放面过断层期间支架稳定性控制技术,即考虑走向角度对液压支架倾向稳定性及倾向角度对液压支架走向稳定性的影响,分析大倾角(双斜)综放面过断层期间支架失稳机理,得出支架不倾倒、不滑移所需的临界支护阻力,并提出对应控制技术。高庄煤矿3上1101大倾角综放面应用此项技术,快速(历时23 d)推过了落差为13.5 m的断层,保证了工作面(呈双斜状态)过断层期间原煤产量的稳定。  相似文献   

20.
针对王庄煤矿9105工作面受构造应力影响导致的大断面巷道变形严重问题,采用数值模拟与现场监测相结合的方法,研究了大断面巷道变形特征及其围岩控制技术。分析表明,巷道断面尺寸效应在4.5m×4.5 m以上时表现更加突出,不利于巷道稳定;随着侧压系数的增加,巷道顶底板及两帮移近量均呈现增加趋势,侧压系数越大,巷道变形增加越剧烈;9105工作面巷道由于宽度较大,导致巷道顶板及两帮变形严重。据此设计了大断面巷道采用“高强度螺纹钢锚杆+预应力锚索+金属网+工字钢棚”联合支护技术。通过工程实践,顶底板移近量降低48.1%,两帮移近量降低55.4%,实现了构造巷道的有效控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号