首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
局灶性脑梗死引起谷氨酸转运体在星形胶质细胞的表达   总被引:4,自引:0,他引:4  
目的探讨急性局灶性脑梗死可塑性变化的星形胶质细胞在脑缺血损伤中的作用。方法免疫组织化学和免疫荧光双标记技术。结果胶质原纤维酸性蛋白(GFAP)阳性星形胶质细胞在脑梗塞灶的周围发生肥大和增生性可塑改变,其突起的变化尤为显著。粗大的突起呈纤维状,并相互交织呈密集的网,其末端向脑梗塞灶的中央延伸。在缺血周边的半影区可见谷氨酸转运体(EAAT1)阳性表达,呈斑点和纤维状;共聚焦扫描显微镜下可见EAAT1与GFAP双标记的星形胶质细胞。结论急性局灶性脑梗死后发生可塑性变化的星形胶质细胞通过增强EAAT1的功能参与脑梗死的修复过程。  相似文献   

2.
星形胶质细胞的活化是中枢神经损伤后的一种普遍现象 ,表现为星形胶质细胞胞体肥大、肿胀、突起增多延长、免疫组化染色 GFAP表达增强等。为探讨脑缺血后不同脑区反应性星形胶质细胞的变化特征 ,本实验建立 Wistar大鼠全脑缺血 30分钟再灌注的模型 ,采用胶质纤维酸性蛋白 (GFAP)单克隆抗体免疫组化方法观察了脑缺血再灌注 3d、5 d、7d后不同脑区内反应性星形胶质细胞的形态特征 ,结果显示如下 :(1)大脑皮质、室周区和小脑内GFAP阳性细胞胞体稍有增大、深染 ,突起增多、增粗、增长且散在分布 ;(2 )海马 CA1、CA2区可见突起短而粗、胞…  相似文献   

3.
星形胶质细胞异质性是指星形胶质细胞在形态结构、生理功能、胞质活性物质、对创伤的反应等方面存在的差异性。脑损伤后星形胶质细胞的活化是一种普遍现象,表现为星形胶质细胞胞体肥大、肿胀、突起增多延长、免疫组化染色GFAP表达增强等。为探讨脑缺血后不同脑区的星形胶质细胞的反应性变化的特征,本实验建立Wistar大鼠全脑缺血30分钟再灌注的模型,采用胶质纤维酸性蛋白(GFAP)单克隆抗体免疫组化方法观察了脑缺血再灌注1d、3d、5d、7d、10d后不同脑区内反应性星形胶质细胞的形态特征,结果如下:1脑缺血再灌注后第1~3d即可见轻度星形胶质…  相似文献   

4.
目的:探讨局灶性脑缺血再灌注时神经元、神经胶质细胞形态变化特点和TNF-α、c-Myc表达的相关性。方法: 采用线栓法大鼠大脑中动脉阻塞复制局部脑缺血再灌注模型,缺血2 h分别再灌注1 d、3 d、7 d,应用光镜和免疫组化法,观察缺血侧额顶叶皮质神经元,神经胶质细胞形态变化及TNF-α、c-Myc蛋白表达。结果: 局灶性脑缺血再灌注后,同侧额顶叶皮质梗死区神经元、小胶质细胞、星形胶质细胞出现变性、坏死,梗死灶周围小胶质细胞和星形胶质细胞增生,呈现时间相关性,变性、死亡以再灌注3 d最为显著,星形胶质细胞和小胶质细胞增生以再灌注7 d最为显著且位于梗死周围区。再灌注后,TNF-α、c-Myc阳性细胞表达也显著增加,以再灌注3 d最为显著,且主要表达于星形胶质细胞、小胶质细胞,少量表达于神经元。结论: 脑缺血再灌注后神经元、神经胶质细胞之间在损伤、抗损伤及修复中相互影响,而TNF-α、c-Myc蛋白表达的增加可能是联系不同细胞间相互作用的主要调节物质之一。  相似文献   

5.
为了深入研究血管周细胞的生物学特性和在脑缺血病理过程中的形态学变化规律 ,对不同缺血时间的大鼠大脑皮质缺血区和尾壳核区的血管周细胞的变化进行了免疫组织化学探查。结果显示 :(1)在脑缺血早期 (3 d,1周 ) ,ED2阳性反应的血管周细胞呈圆形或卵圆形 ,无明显的突起。数量增加的阳性细胞主要位于大脑皮质缺血灶外围的血管周围 ,并随血管走行而分布 ,缺血灶中央区的阳性细胞数量少。在缺血侧尾壳核 ,阳性细胞的数量明显增加 ,呈卵圆形或杆状 ,阳性细胞大多数位于尾壳核的实质内 ,少数位于血管壁内 ;(2 )在脑缺血后期 (4周 ,6周 ) ,大脑皮质缺血灶外周的 ED2阳性细胞的数量、形态和分布形式与脑缺血早期相比 ,也无明显变化 ;但在脑缺血灶的中央区有大量的 ED2阳性反应细胞 ,呈圆形 ,无明显突起 ;脑缺血后期 ED2阳性细胞主要位于尾壳核外侧区 ,其数量与缺血早期无明显的变化 ,但细胞形态变化显著 ,大多数细胞胞体肥大并有 2~ 3个明显的突起。脑缺血后期 ,在侧脑室脉络丛出现大量 ED2阳性反应的细胞 ,其胞体肥大 ,并有多个突起。结果表明 :慢性局灶脑缺血导致大脑皮质缺血区和尾壳核区的血管周细胞发生特征性的形态学改变。提示 ,血管周细胞与慢性脑缺血病理变化有联系  相似文献   

6.
大鼠脑缺血再灌流时神经元损伤与星形胶质细胞的反应   总被引:7,自引:1,他引:6  
为探讨星形胶质细胞在缺血性神经元损伤中的作用及其与神经元损伤的关系 ,本实验阻塞大鼠大脑中动脉 2 h,再灌流0 .5~ 48h建立短暂局灶性脑缺血模型 ,进行 H-E染色 ;通过胶质原纤维酸性蛋白和细胞核增殖抗原免疫组化单重或双重反应 ,TU NEL和胶质原纤维酸性蛋白免疫组化双重反应观察了神经元和星形胶质细胞的反应。结果表明 :再灌流 2 4h缺血区面积最大 ,再灌流 6h开始出现神经元不可逆变性 ,2 4h梗塞成熟 ;星形胶质细胞表现为反应性、营养不良性和退形变三种不同的形态特点。再灌流 48h时星形胶质细胞数量开始增多。 48h之内星形胶质细胞无增生 ,且有少量星形胶质细胞凋亡。这些结果提示脑缺血时星形胶质细胞反应与神经元损伤密切相关 ,反应性星形胶质细胞是其积极应答神经元损伤的结果 ,在维持神经元存活中起作用。  相似文献   

7.
目的: 通过观察右美托咪定(DEX)对大鼠脑缺血再灌注损伤后星形胶质细胞的影响,探讨DEX对抗脑缺血再灌注损伤的作用及其机制。方法: 采用大脑中动脉栓塞法建立大鼠局灶性脑缺血再灌注模型,将SD大鼠随机分为假手术组、单纯脑缺血再灌注组、DEX预处理1组(缺血前30 min腹腔给予DEX 20 μg/kg)及DEX预处理2组(缺血前30 min腹腔给予DEX 40 μg/kg)。缺血再灌注24 h后,观察大鼠神经功能缺失评分,通过HE染色了解脑梗塞后脑组织的病理学变化,采用免疫组化和蛋白免疫印迹方法观察缺血后脑组织星形胶质细胞的变化。结果: DEX预处理能显著改善大鼠神经功能缺失评分,减小大鼠梗死面积,减少缺血区胶质纤维酸性蛋白(GFAP)阳性星形胶质细胞和肿瘤坏死因子α(TNF-α)阳性星形胶质细胞,降低GFAP表达水平。结论: DEX对缺血再灌注损伤的脑组织具有保护作用,其作用机制可能与抑制星形胶质细胞激活有关。  相似文献   

8.
大鼠局灶脑缺血诱导巢蛋白的反应模式   总被引:8,自引:1,他引:8       下载免费PDF全文
目的:观察巢蛋白(nestin)在局灶脑缺血区的反应模式,以探讨其在脑梗塞灶修复过程中的作用。方法:采用局灶脑缺血模型和免疫组织化学染色方法,探查36只成年雄性SD大鼠的大脑不同区域的巢蛋白阳性细胞的形态、反应时程和分布形式。结果:假手术大鼠的巢蛋白阳性反应存在小血管、微血管和室管膜上皮,在第三脑室底壁内有许多细的阳性纤维,胞体不明显。在脑缺血3 d组,大量巢蛋白阳性细胞分布于缺血侧大脑半球,以大脑皮质缺血区、视前区、尾壳核及第三脑室底部最为显著。缺血区周围的大脑皮质浅层和视前区皮质的阳性细胞呈纤维状,而皮质深层的阳性细胞则呈星状。 巢蛋白阳性细胞的形态和数量变化在脑缺血1周时最显著。阳性细胞显示高度的肥大和增生性变化,其数量亦明显增加,以大脑皮质缺血区和尾壳核区最显著。皮质缺血区和尾壳核区的巢蛋白阳性反应持续到脑缺血6周。随后,其反应稍有减弱。结论:局灶脑缺血诱导反应型星形胶质细胞重表达巢蛋白,提示其可能参与脑缺血性损伤的修复过程。  相似文献   

9.
目的:研究高血脂对大鼠脑缺血再灌注后海马CA4区内星形胶质细胞表达胶质纤维酸性蛋白(GFAP)的影响.方法:高脂饮食建立高血脂模型.以线栓法制作大鼠大脑中动脉阻塞的局灶性脑缺血再灌注模型,采用免疫组织化学和蛋白印迹与神经行为相结合的方法,观测缺血再灌注侧大脑海马CA4区内星形胶质细胞GFAP的表达和神经功能的变化.结果...  相似文献   

10.
目的明确星形胶质细胞是否参与原发性高血压进程。方法免疫组织化学染色观察6月龄自发性高血压大鼠(SHR)脑干心血管核团内胶质纤维酸性蛋白(GFAP)阳性星形胶质细胞的形态和分布。结果 SHR的孤束核、延髓腹外侧区尾侧部和嘴侧部内有部分GFAP阳性星形胶质细胞出现胞体肥大、突起增粗的活化现象。计数统计结果显示,同Wistar大鼠相比,上述核团内星形胶质细胞总数没有增加,但活化的比例显著增高。结论 SHR脑干心血管调节中枢存在星形胶质细胞活化现象,但其病理生理作用及机制有待于进一步研究。  相似文献   

11.
This study investigated astroglial responses after focal cerebral ischemia in the rat cortex induced by photothrombosis. Astrocyte activation was studied at various time points by immunocytochemistry for glial fibrillary acidic protein (GFAP) and vimentin (VIM). We found a dual astrocytic response to focal ischemia: In the border zone of the infarct, GFAP-positive astrocytes were present within 2 days and persisted for 10 weeks. These astrocytes additionally expressed VIM. Remote from the ischemic lesion, cortical astrocytes of the entire ipsilateral hemisphere transiently expressed GFAP, but not VIM, beginning on day 3 after photothrombosis. This response had disappeared on day 14. By recording DC potentials, five to seven spreading depressions (SD) could be detected on the cortical surface during the first 2 h after photothrombosis. Treatment with MK801, a non-competitive NMDA-receptor antagonist, completely abolished SD and remote ipsilateral astrocytic activation, while the reaction in the border zone of the infarct remained unchanged. Functionally, persistent astrocytosis around the infarct might be induced by leukocyte-derived cytokines, while NMDA-receptor-mediated SD might cause remote responses.  相似文献   

12.
Focal cerebral ischemia results in an ischemic core surrounded by the peri‐infarct region (penumbra). Most research attention has been focused on penumbra while the pattern of cell fates inside the ischemic core is poorly defined. In the present investigation, we tested the hypothesis that, inside the ischemic core, some neuronal and vascular cells could survive the initial ischemic insult while regenerative niches might exist many days after stroke in the adult brain. Adult mice were subjected to focal cerebral ischemia induced by permanent occlusion of distal branches of the middle cerebral artery (MCA) plus transient ligations of bilateral common carotid artery (CCA). The ischemic insult uniformly reduced the local cerebral blood flow (LCBF) by 90%. Massive cell death occurred due to multiple mechanisms and a significant infarction was cultivated in the ischemic cortex 24 h later. Nevertheless, normal or even higher levels of brain‐derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) persistently remained in the core tissue, some NeuN‐positive and Glut‐1/College IV‐positive cells with intact ultrastructural features resided in the core 7‐14 days post stroke. BrdU‐positive but TUNEL‐negative neuronal and endothelial cells were detected in the core where extensive extracellular matrix infrastructure developed. Meanwhile, GFAP‐positive astrocytes accumulated in the penumbra and Iba‐1‐positive microglial/macrophages invaded the core several days after stroke. The long term survival of neuronal and vascular cells inside the ischemic core was also seen after a severe ischemic stroke induced by permanent embolic occlusion of the MCA. We demonstrate that a therapeutic intervention of pharmacological hypothermia could save neurons/endothelial cells inside the core. These data suggest that the ischemic core is an actively regulated brain region with residual and newly formed viable neuronal and vascular cells acutely and chronically after at least some types of ischemic strokes.  相似文献   

13.
Stem cell transplantation may provide an alternative therapy to promote functional recovery after various neurological disorders including cerebral infarct. Due to the minimal immunogenicity and neuronal differentiation potential of neural stem cells (NSCs), we tested whether intravenous administration of mice-derived C17.2 NSCs could improve neurological function deficit and cerebral infarction volume after ischemic stroke in rats. Additionally, we evaluated the survival, migration, proliferation, and differentiation capacity of transplanted NSCs in the rat brain. Intravenous infusion of NSCs after middle cerebral artery occlusion (MCAO) showed better performance in neurobiological severity scores after MCAO compared to control. However, the volume of cerebral infarction was not different at 7 days after MCAO compared with control. Transplanted NSCs were detected in the ischemic region but not in the contralateral hemisphere. NSCs differentiated into neurons or astrocytes after MCAO. These data suggest that intravenously transplanted NSCs can migrate, proliferate, and differentiate into neurons and astrocytes in the rat brain with focal ischemia and improve functional recovery.  相似文献   

14.
Summary Concomitant with the proliferation of satellite microglial cells occurring in the process of motor neuron regeneration, an astrocytic hypertrophy is also seen. A remarkable increase of glial fibrillary acidic protein (GFAP) immunoreactivity is demonstrated in astrocytes of the facial nucleus within a few days following nerve transection. The increase of GFAP antigenicity is associated with an increased appearance of glial filaments and astrocytic processes. We suggest that resident protoplasmic astrocytes become involved in retrograde changes in facial motor neurons and transform into reactive astrocytes. They are of the fibrous type and highly positive for GFAP.  相似文献   

15.
观察胶质细胞源性神经营养因子(GDNF)对大鼠局灶性脑缺血磁共振成像(MRI)及皮质和尾壳核神经干细胞(NSCs)增殖和分化的影响,并探讨GDNF对内源性NSCs增殖分化的作用机制。制作右侧局灶性脑缺血模型,左侧脑室注射GDNF,5-溴脱氧尿核苷(BrdU)标记DNA合成期(S期)细胞,Y迷宫检测大鼠学习记忆能力,MRI观察脑部影像学变化,免疫组化法观察正常组、假手术组、缺血组、生理盐水组和GDNF组大鼠局灶性脑缺血90min后再灌注不同时间(3、7、14、21、28d)皮质和尾壳核内BrdU/nestin、BrdU/NeuN、BrdU/GFAP阳性双标细胞。GDNF组对学习记忆的恢复较模型组和生理盐水组明显;MRI检查T2WI上缺血区信号明显增高和轻微脑肿胀,GDNF组缺血后3d,缺血区出现小面积信号增高影,14d信号强度明显下降;GDNF组Br-dU/nestin双标细胞数明显增加;新生细胞分化结果显示28d时,GDNF组BrdU/NeuN(58.23%±15.30%)、BrdU/GFAP(11.29%±4.30%),与其它组相比均有显著性差异(P<0.05)。以上结果证实局灶性脑缺血激活皮质和尾壳核内的NSCs,而GDNF可促进内源性NSCs增殖、分化,从而促进学习记忆能力的恢复。  相似文献   

16.
Aim and methods: We investigated the immunohistochemical alterations of S100β‐, S100‐, glial fibrillary acidic protein (GFAP)‐ and isolectin B4‐positive cells in the hippocampus after 5 min of transient cerebral ischaemia in gerbils. We also examined the effect of 3‐hydroxy‐3‐methylglutaryl‐coenzyme A (HMG‐CoA) reductase inhibitor pitavastatin against neuronal damage in the hippocampal CA1 sector after ischaemia. Results: Severe neuronal damage was observed in the hippocampal CA1 pyramidal neurons from 5 days after ischaemia. GFAP‐positive cells increased gradually in the hippocampus from 5 days after ischaemia. Five and 14 days after ischaemia, significant increases in the number of GFAP‐positive cells and isolectin B4‐positive cells were observed in the hippocampal CA1 and CA3 sector. Mild increases in the number of S100 and S100β‐positive cells were observed in the hippocampal CA1 sector from 1 h to 2 days after ischaemia. Thereafter, S100β‐positive cells increased in the hippocampal CA1 sector after ischaemia, whereas S100‐positive cells decreased in this region. In our double‐labelled immunostainings, S100 and S100β immunoreactivity was found in GFAP‐positive astrocytes, but not in isolectin B4‐positive microglia. Pharmacological study showed that HMG‐CoA reductase inhibitor, pitavastatin, can protect against the hippocampal CA1 neuronal damage after ischaemia. This drug also prevented increases in the number of GFAP‐positive astrocytes, isolectin B4‐positive microglia, S100‐positive astrocytes and S100β‐positive astrocytes after ischaemia. Conclusion: The present study demonstrates that pitavastatin can decrease the neuronal damage of hippocampal CA1 sector after ischaemia. This beneficial effect may be, at least in part, mediated by inhibiting the expression of astrocytic activation in the hippocampus at the acute phase after ischaemia. Thus the modulation of astrocytic activation may offer a novel therapeutic strategy of ischaemic brain damage.  相似文献   

17.
目的研究树鼩局部脑血栓形成过程中,缺血对侧皮层白细胞介素(interluekin,IL)-8水平及星形胶质细胞(astrocyte,AS)胶质纤维酸蛋白(glial fibrillary acidic protein,GFAP)表达的改变,并探讨扩布性抑制(spreading depression,SD)的可能机制。方法采用光化学反应诱导树鼩血栓性局部脑缺血,经免疫组化法和酶联免疫吸附分析法分别检测缺血对侧星形胶质细胞GFAP表达的灰度值及脑组织IL-8水平,并观察不同浓度IL-8对体外培养条件下星形胶质细胞增殖的影响。结果脑血栓形成后72h缺血对侧皮层IL-8水平及GFAP表达明显增加(P〈0.01),于培养的星形胶质细胞内加入不同浓度(0.1-1.0μg/ml)IL-8,GFAP阳性细胞数呈时间与剂量依赖方式增加(P〈0.01)。结论脑血栓形成后缺血对侧皮层GFAP表达的改变与IL-8水平升高所致AS活化有关,可能是引起SD的重要因素。  相似文献   

18.
本研究目的在于 :观察脑缺血再灌流后海马区胶质纤维酸性蛋白的分布及动态表达 ,探讨其与缺血性神经元的联系。钳夹沙土鼠的双侧颈总动脉制造脑缺血模型 ,应用免疫荧光法染色。结果显示 :脑缺血再灌流后胶质纤维酸性蛋白的阳性反应主要分布于海马本部的始层、放射层、分子层及齿状回门区。再灌流 3 d,胶质纤维酸性蛋白反应增强 ;7~ 15 d,胶质纤维酸性蛋白反应达高峰 ;脑缺血再灌流 40 d和对照组相比胶质纤维酸性蛋白阳性反应仍维持较高水平。再灌流 3 0~ 40 d,CA1区锥体层胶质纤维酸性蛋白阳性细胞明显增强。本研究结果表明 :脑缺血再灌流后海马区星形胶质细胞活化及胶质纤维酸性蛋白表达增强长期保持在较高水平 ,星形胶质细胞的活化、增生可作为神经元受损可靠而敏感的指标  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号