首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo‐West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR, COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000–3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.  相似文献   

2.
This study examined the minimum force required of functional teeth and replacement teeth in the tiger shark Galeocerdo cuvier and the sandbar shark Carcharhinus plumbeus to penetrate the scales and muscle of sheepshead Archosargus probatocephalus and pigfish Orthopristis chrysoptera. Penetration force ranged from 7·7–41·9 and 3·2–26·3 N to penetrate A. probatocephalus and O. chrysoptera, respectively. Replacement teeth required significantly less force to penetrate O. chrysoptera for both shark species, most probably due to microscopic wear of the tooth surfaces supporting the theory shark teeth are replaced regularly to ensure sharp teeth that are efficient for prey capture.  相似文献   

3.
A procedure is described for the purification of a carboxylesterase from shark liver, using a chloroform-acetone powder prepared from the liver as the starting material. The yield of purified enzyme is approximately 50 mg from 530 g of chloroform-acetone powder. The preparation is electrophoretically homogeneous. Active-site titrations with paraoxon gave an equivalent weight of approximately 83 000. The molecular weight, found from sedimentation equilibrium experiments, is approximately 80 000. There is no evidence of any association or dissociation of this species. The enzyme shows a marked preference for aryl esters over alkyl esters, in contrast to other carboxylesterases so far studied. The amino acid composition of the purified enzyme is reported.  相似文献   

4.
Total lengths (LT) at age and growth rates for south‐west Pacific Galeocerdo cuvier were estimated from vertebral growth‐band counts of 202 sagitally sectioned centra from 112 females (71–430 cm LT), 79 males (72–351 cm LT) and 11 of unknown sex. Captive growth data were also examined to complement vertebral age estimations. The sexes combined modelled growth coefficient (k = 0·08) was smaller than previously reported for G. cuvier populations elsewhere. Split‐band and narrow banding patterns were identified as potential sources of age underestimation in this species.  相似文献   

5.
Synopsis Stomach content data from 281 tiger sharks caught during shark control programs in Hawaii between 1967 and 1969, and during 1976 were analyzed to examine feeding habits and ontogenetic shifts in diet. As sharks increased in size, prey diversity and frequency of occurrence of large prey items increased. The percent occurrence of teleosts and cephalopods in stomachs decreased as sharks increased in length, while occurrence of elasmobranchs, turtles, land mammals, crustaceans, and undigestible items increased. Comparisons between the diets of tiger sharks from Hawaii and other locations indicate that ontogenetic shifts are universal in this species and that tiger sharks may be opportunistic feeders that prey heavily on abundant, easy to capture prey. Small tiger sharks may be spatially segregated from medium and large sharks and appear to be primarily nocturnal, bottom feeders. Large tiger sharks feed near the bottom at night, but also feed at the surface during the day. Prey, similar in size to humans, begin to occur in the diet of tiger sharks approximately 230 cm TL, and therefore sharks of this size and larger may pose the greatest threat to humans. Ontogenetic shifts in diet may be attributed to increased size of sharks, expanded range and exploitation of habitats of larger sharks, and/or improved hunting skill of larger sharks.Deceased 1974  相似文献   

6.
Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so‐called bio‐swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high‐yield sources of DNA for genomic‐scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield.  相似文献   

7.
Tiger sharks (Galeocerdo cuvier) play an important ecological role as top predators, yet knowledge of their reproductive ecology is scarce. Here, the authors report the first observation of a potential neonate G. cuvier at Cocos Island, a predator-dominated oceanic island in the Eastern Tropical Pacific (ETP). The individual was detected using baited remote underwater video stations (BRUVS). The cameras also detected female individuals potentially pregnant, suggesting that parturition may take place at or near the island. Nonetheless, it is still unclear if the presence of a single neonate is an isolated event or evidence that the species is using the island for reproduction.  相似文献   

8.
Different animal intraspecific classes commonly differ in their prey selection. Such differences in feeding ecology are thought to reduce resource competition between classes, but other factors (i.e. behavioural, morphological, and physiological differences) also contribute to this widespread phenomenon. Although several studies have correlated the size of the feeding apparatus with prey selection in many animals, few studies have examined how the shape of the feeding apparatus is related to prey selection. Furthermore, even though the dietary regimen of many animals changes during ontogeny, few studies have examined how shape changes in the feeding apparatus may be related to these ontogenetic dietary shifts. Here we address these issues by examining how head shape, head size and prey selection change over ontogeny in adult males, adult females and juveniles of the cottonmouth snake Agkistrodon piscivorus . Our scaling data for head characteristics showed that all head measurements in adult male and female A. piscivorus scaled with significant negative allometry, whereas juvenile head measurements typically scaled isometrically, except for head volume (positive) and head length (negative). Thus, juveniles have relatively broad and high, but short, heads. Large adult male and female A. piscivorus have relatively small head dimensions overall. Thus, juveniles appear to undergo a rapid change in head volume, which subsequently slows considerably as sexual maturity is achieved. However, our multivariate analysis of size-adjusted head dimensions showed that juveniles differed only slightly in their head shape compared with adult male and female A. piscivorus . In general, prey size increased with snake size across all age and sex groups, but an ontogenetic shift in prey type was not detected in either males or females.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 151–159.  相似文献   

9.
Highly migratory, cosmopolitan oceanic sharks often exhibit complex movement patterns influenced by ontogeny, reproduction, and feeding. These elusive species are particularly challenging to population genetic studies, as representative samples suitable for inferring genetic structure are difficult to obtain. Our study provides insights into the genetic population structure one of the most abundant and wide‐ranging oceanic shark species, the blue shark Prionace glauca, by sampling the least mobile component of the populations, i.e., young‐of‐year and small juveniles (<2 year; N = 348 individuals), at three reported nursery areas, namely, western Iberia, Azores, and South Africa. Samples were collected in two different time periods (2002–2008 and 2012–2015) and were screened at 12 nuclear microsatellites and at a 899‐bp fragment of the mitochondrial control region. Our results show temporally stable genetic homogeneity among the three Atlantic nurseries at both nuclear and mitochondrial markers, suggesting basin‐wide panmixia. In addition, comparison of mtDNA CR sequences from Atlantic and Indo‐Pacific locations also indicated genetic homogeneity and unrestricted female‐mediated gene flow between ocean basins. These results are discussed in light of the species' life history and ecology, but suggest that blue shark populations may be connected by gene flow at the global scale. The implications of the present findings to the management of this important fisheries resource are also discussed.  相似文献   

10.
The Ontogeny of Neonesidea oligodentata (Bairdioidea, Ostracoda, Crustacea)   总被引:4,自引:3,他引:1  
This is the first detailed ontogenetic study of the appendages and carapace of a bairdioidean ostracod. This paper uses the development of the appendages and changes in the pore systems of the carapace through ontogeny to help determine the relationship between the Bairdioidea and other podocope groups. Neonesidea oligodentata has eight post-embryonic stages: one fewer than the Cypridoidea, Cytheroidea and Darwinuloidea. The first instar of N. oligodentata resembles that of the second instar of the Cypridoidea and Cytheroidea in terms of appendages, and it is postulated that there is an additional instar stage of N. oligodentata that molts within the egg. The general sequence of appearance of the limbs from instar A-7 onwards is similar to that of the Cypridoidea and Cytheroidea, but different from that of the Darwinuloidea. Like the Cypridoidea and Cytheroidea, N. oligodentata has a gap in its ontogenetic development during instar A-6, where no new Anlage is added. Pore system analysis of A-7 instars suggests that the Bairdioidea may be more closely related to the Cypridoidea than to the Cytheroidea.  相似文献   

11.
Knowledge of population structure, connectivity, and effective population size remains limited for many marine apex predators, including the bull shark Carcharhinus leucas. This large‐bodied coastal shark is distributed worldwide in warm temperate and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, the bull shark likely plays a vital ecological role within marine food webs, but is at risk due to inshore habitat degradation and various fishing pressures. We investigated the bull shark's global population structure and demographic history by analyzing the genetic diversity of 370 individuals from 11 different locations using 25 microsatellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers revealed clustering between sharks from the Western Atlantic and those from the Western Pacific and the Western Indian Ocean, with no contemporary gene flow. Microsatellite data suggested low differentiation between the Western Indian Ocean and the Western Pacific, but substantial differentiation was found using mitochondrial DNA. Integrating information from both types of markers and using Bayesian computation with a random forest procedure (ABC‐RF), this discordance was found to be due to a complete lack of contemporary gene flow. High genetic connectivity was found both within the Western Indian Ocean and within the Western Pacific. In conclusion, these results suggest important structuring of bull shark populations globally with important gene flow occurring along coastlines, highlighting the need for management and conservation plans on regional scales rather than oceanic basin scale.  相似文献   

12.
Body form can change across ontogeny, and can influence how animals of different sizes move and feed. Scaling data on live apex predatory sharks are rare and, therefore, we examined patterns of scaling in ontogenetic series of four sympatric shark species exhibiting a range of sizes, ecologies and life histories (tiger, bull, blacktip, and nurse shark). We evaluated 13 linear morphological variables and two areas (caudal and dorsal) that could influence both animal condition and locomotor performance. These measurements included dimensions of the dorsal, pectoral, and caudal fins, as well as several dimensions of body circumference, and of the head. For all four species, the body axis (eye‐to‐eye, lateral span, frontal span, proximal span) scaled close to isometry (expected slope of 1.0). The two largest sharks (tiger and bull sharks) also showed significant negative allometry for elements of the caudal fin. We found significant negative allometry in the lengths of the upper lobe of the caudal fin (caudal fin 1) and the overall height of the caudal fin (caudal fin 2) in tiger and bull sharks, with slopes ranging from about 0.60 to 0.73. Further, tiger sharks showed negative allometry in caudal fin area. These results suggest that in terms of overall body dimensions, small sharks are roughly geometrically similar to large sharks, at least within the species we examined. However, juvenile tiger (and to a lesser extent bull sharks) are notable in having proportionately larger caudal fins compared to adult sharks. As the caudal fin contributes to generating thrust during forward locomotion, this scaling implies differences among adult and juvenile sharks in locomotor ability. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 126–135.  相似文献   

13.
The development of cartilaginous structures in cultured sea bream Sparus aurata larvae and the timing of their ossification was studied. In cultivated sea bream larvae the first cartilaginous structure to be identified was hypural 1 at 4.1 mm notochord length ( L N). By 5.3 mm L N, prior to the onset of ossification, it was possible to distinguish the following cartilaginous structures: all 23 neural arches, all 13 haemal arches and two of the four pairs of parapophyses. The neural arches 1–4 and 15–23 were formed on the notochord and elongated dorsally, while neural arches 5–14 appeared on the dorsal side of the spinal cord and elongated ventrally. Initiation of ossification occurred at 5.7–6.0 mm standard length ( L S) when the cartilaginous ontogeny of the vertebral column was completed. Ossification was coincident with dorsal flexion at the posterior end of the notochord and occurred in a sequential manner: (1) dorsoanteriorly, the cartilaginous neural arches and the centra were the first structures to ossify; (2) ventrad at the centre, at 7.0–7.5 mm L S; (3) posteriorly at 7.1 mm L S the hypural complex and urostyle (24th centrum) were ossified; and (4) dorsad at the centre (neural arches and spines).  相似文献   

14.
The taxonomic status and validity of Scymnodon macracanthus (Regan, 1906) and Scymnodon plunketi (Waite, 1910) are revised in light of new material from the Southern Pacific and Indian Oceans. Despite being historically accepted as distinct taxa, recent studies suggested the possibility that these species could represent a single taxon. Morphometrics, meristics and morphology of dermal denticles show that S. plunketi is indeed a junior synonym of S. macracanthus. Previous distinctive characters proved to be the result of intraspecific variation. S. macracanthus is therefore redescribed including an updated comparative diagnosis for the genus Scymnodon in the family Somniosidae.  相似文献   

15.
16.
It has been documented extensively that body size affects the physiology and musculoskeletal function of organisms. However, less well understood is how body size affects the ecology of organisms through its effects on physiology and performance. We explored the effects of body size on morphology and performance in different ontogenetic classes and sexes of a common Anolis lizard ( A. lineatopus ). Next, we tested whether these morphological and performance differences may affect functional aspects of the diet such as prey size and prey hardness. Our data showed that males, females and juveniles differ significantly in head size, head shape and bite force. Multiple regression models indicated that head shape and bite force are significantly correlated to prey size and hardness. Yet juveniles had relatively large heads and bit disproportionately hard for their size, allowing them to eat prey as large as those of females. However, for a given prey size, males and females ate more robust prey than did juveniles. Additionally, males ate relatively harder prey than did juveniles. These data suggest that: (1) body size affects the dietary ecology of animals through its effect on head size and bite force; (2) changes in head morphology independent of changes in overall size also have important effects on performance and diet.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 443–454.  相似文献   

17.
We analyzed Hg, Cd, Zn and Cu in the liver as well as Hg and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) in muscle from tiger sharks (Galeocerdo cuvier) in Japan. The Hg concentration in the muscle increased slightly and proportionally with increases in body length, but the Hg concentration in the liver increased markedly after maturation (exceeding 2.7 m precaudal length). The Hg concentration in the liver of mature shark was higher than that in the muscle. The Cd concentration in the liver increased with increases in body length. On the other hand, the Zn and Cu concentrations in the liver decreased during the growth stage, but thereafter increased with increased Cd burden due to growth. The marked increase in hepatic Hg in mature sharks may be explained by the continuous intake of Hg via food, slower growth and Hg–Se complex formation. High concentrations of Zn and Cu in the liver of immature sharks and concomitant increases in Zn and Cu with the Cd burden in the liver of mature sharks may be explained by the physiological requirements of Zn and Cu during the growth stage, the induction of metallothionein synthesis due to the Cd burden and the subsequent binding of these metals to metallothionein. The δ15N and δ13C values decreased with increases in body length, suggesting a shift from coastal feeding to pelagic feeding with shark growth. The Hg and Cd concentrations tended to be negatively correlated with the δ15N and δ13C values as a result of the increase in Hg and Cd accumulation due to the growth and the decreases in δ15N and δ13C values due to the sift of feeding area.  相似文献   

18.
Nursery areas are fundamental for the success of many marine species, particularly for large, slow-growing taxa with low fecundity and high age of maturity. Here, we examine the population size-class structure of the extinct gigantic shark Otodus megalodon in a newly described middle Miocene locality from Northeastern Spain, as well as in eight previously known formations (Temblor, Calvert, Pisco, Gatún, Chucunaque, Bahía Inglesa, Yorktown and Bone Valley). In all cases, body lengths of all individuals were inferred from dental parameters and the size-class structure was estimated from kernel probability density functions and Gaussian mixture models. Our analyses support the presence of five potential nurseries ranging from the Langhian (middle Miocene) to the Zanclean (Pliocene), with higher densities of individuals with estimated body lengths within the typical range of neonates and young juveniles. These results reveal, for the first time, that nursery areas were commonly used by O. megalodon over large temporal and spatial scales, reducing early mortality and playing a key role in maintaining viable adult populations. Ultimately, the presumed reliance of O. megalodon on the presence of suitable nursery grounds might have also been determinant in the demise of this iconic top predatory shark.  相似文献   

19.
The ontogenetic process of the staminate and carpellate flowers of Schisandra sphenanthera Rehd. et Wils., an endemic species to China, was observed for the first time under the scanning electron microscope (SEM). In the staminate flowers, the perianth units and stamens were initiated acropetally in a continuous fasion with 2/5 spiral phyllotaxis, while no female structures were formed. Anthers were differentiated prior to the filaments formation. Throughout all the stages were the stamens arranged spirally on a columniform receptacle. In the carpellate flowers, the initiation sequence of the perianth units and carpels were similar to that of the staminate flowers. In contrast, no male structures were formed. Shortly after initiation, the carpel primordia began their marginal growth besides the apical growth and then appresses were formed on the adaxial surfaces of the primordia. However the lower margins of these appresses were inconspicuous, resulting in conduplicate carpels. Two ovules were developed on the inner surface near either lateral margins of the carpel, shaping laminar placentae. Compared with S. glabra (Brickell) Rehd., a related American species, the evolutionary trend of phyllotaxis of androecia is considered that stamens may change from spiral to approximately whorled arrangement, accompanying with the change of receptacle from a column to a flattened shield. It was also suggested that the stamens being numerous and uncertain in number become certain and decrease in number to 5 (4-7). Sterile stamens are observed and the unisexual nature of the flowers is discussed. Two types of carpel primordia are categorized, corresponding to two types of carpels, namely, ascidiate and conduplicate carpels, respectively.  相似文献   

20.
The diural caudal skeleton of teleostean actinopterygians develops phylogeneticaily and ontogenetically from a polyural skeleton. The reduction of the polyural anlage to four, three, two or fewer centra in the adult caudal skeleton takes different pathways in different genera (e.g. compare Elops and Albula) and groups of teleosts. As a result, ural centra are not homologous throughout the teleosts. By numbering the ural centra in a homocercal tail in polyural fashion, one can demonstrate these and the following differences. The ventral elements (hypurals) always occur in sequential series, whereas the dorsal elements (epurals and uroneurals) may alter like the ural centra. The number of epurals, five or four in fossil primitive teleosts, is reduced in other primitive and advanced teleosts, but the same epurals are not always lost. The number of uroneurals, seven in fossil teleosts, is reduced in living teleosts, but it has not been demonstrated that the first uroneural is always derived from the neural arch of the same ural centrum. The landmark in the homocercal tail is the preural centrum I which can be identified by (1) bifurcation of the caudal artery and vein in its ventral element, the parhypural, (2) its position directly caudal to the preural centrum (PU2) which supports the lowermost principal caudal ray with its haemal spine, (3) carrying the third hypaxial element ventral to the course of arteria and vena pinnalis, and (4) by carrying the first haemal spine (parhypural) below the dorsal end of the ventral cartilage plate. The study of the development of the vertebral column reveals that teleosts have different patterns of centrum formation. A vertebral centrum is a complete or partial ring of mineralized, cartilaginous or bony material surrounding at least the lateral sides of the notochord. A vertebral centrum may be formed by arcocentrum alone, or arcocentral arcualia and chordacentrum, or arco-, chorda- and autocentrum, or arcocentral arcualia and autocentrum. This preliminary research demonstrates that a detailed ontogenetic interpretation of the vertebral centra and of the caudal skeleton of different teleosts may be useful tools for further interpretations of teleostean interrelationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号