首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 76 毫秒
1.
一种基于BCB键合技术的新型MEMS圆片级封装工艺   总被引:2,自引:1,他引:1  
苯并环丁烯(BCB)键合技术通过光刻工艺可以直接实现图形化,相对于其他工艺途径具有工艺简单、容易实现图形化的优点。选用4000系列BCB材料进行MEMS传感器的粘接键合工艺试验,解决了圆片级封装问题,采用该技术成功加工出具有三层结构的圆片级封装某种惯性压阻类传感器。依据标准GJB548A对其进行了剪切强度和检漏测试,测得封装样品漏率小于5×10-3Pa.cm3/s,键合强度大于49N,满足考核要求。  相似文献   

2.
葛羽屏 《压电与声光》2013,35(1):105-107
研究了一种使用非光敏苯并环丁烯(BCB)材料的低温硅片级键合,并将其用于压力谐振传感器封装.采用AP3000作为BCB中的黏结促进剂,将谐振片与硅片或Pyrex 7740玻璃晶圆键合,程序简单,低成本,密封性能较高,且键合温度低于250℃.通过拉伸实验,这种键合的剪切强度高于40 MPa.所以此硅片级键合适用于压力传感器的封装.  相似文献   

3.
MEMS圆片级真空封装金硅键合工艺研究   总被引:2,自引:1,他引:1  
提出一种适用于微机电系统(MEMS)圆片级真空封装的键合结构,通过比较分析各种键合工艺的优缺点后,选择符合本试验要求的金硅键合工艺.根据所提出键合结构和金硅键合的特点设计键合工艺流程,在多次试验后优化工艺条件.在此工艺条件下,选用三组不同结构参数完成键合试验.之后对比不同的结构参数分别测试其键合质量(包括键合腔体泄漏率...  相似文献   

4.
研究了基于圆片级苯并环丁烯(Benzocyclobutence,BCB)键合技术的Cu-Cu互连的界面情况。提出一种Cu凸点插针形式的圆片级BCB键合结构,研究BCB预固化程度、键合压力以及BCB与Cu厚度差等因素对晶圆界面键合质量的影响,并对此键合结构进行了键合空洞检测与剖面SEM分析,以及温循可靠性评价。结果表明,当预固化温度为210℃、键合压力为2×10~5 Pa,电流密度为20mA/cm~2、Cu与BCB厚度差值为3μm时,键合结构界面无空洞、键合质量高,并且Cu-Cu互连导通良好,接触电阻小于10mΩ。  相似文献   

5.
为提升微机电系统(MEMS)器件的性能及可靠性,MEMS圆片级封装技术已成为突破MEMS器件实用化瓶颈的关键,其中基于晶圆键合的MEMS圆片级封装由于封装温度低、封装结构及工艺自由度高、封装可靠性强而备受产学界关注。总结了MEMS圆片级封装的主要功能及分类,阐明了基于晶圆键合的MEMS圆片级封装技术的优势。依次对平面互连型和垂直互连型2类基于晶圆键合的MEMS圆片级封装的技术背景、封装策略、技术利弊、特点及局限性展开了综述。通过总结MEMS圆片级封装的现状,展望其未来的发展趋势。  相似文献   

6.
研究了利用低温等温凝固技术实现Cu-Sn键合在MEMS圆片级封装中的应用.基于Cu-Sn二元平衡相图,对键合层结构进行了设计,同时设计了用于测试的键合图形,并对设计的键合结构进行了流片实验.通过对圆片制作及键合等工艺的一系列优化,在250℃的低温条件下生成了熔点为415℃的金属间化合物,获得了良好的键合层.得到的键合样品剪切力强度值达到了GJB548B-2005标准的要求.研究表明,Cu-Sn等温凝固键合技术具有实际应用的潜力.  相似文献   

7.
黄子伦 《电子与封装》2003,3(6):40-41,56
<正> 微机械系统(MEMS)工艺使新的概念迅速转换为实际样机和早期产品。这种转换的速度基于集成电路、产业制造基础的拉动能力:工厂、设备、仪表、工艺、材料和从业人员。 虽然早期的MEMS工艺技术获得成功得益于与IC产业相似,而限制MEMS市场增长的现行问题却源于MEMS和IC之间的本质差别。差别最大的在于封装和组装上。通常认为,封装花费了MEMS器件  相似文献   

8.
用苯并环丁烯进行圆片级硅–硅气密性键合   总被引:1,自引:0,他引:1  
应用苯并环丁烯(BCB)材料对硅片进行了圆片级低温键合,并研究了其在气密性封装工艺中的应用。测试表明:在250℃的低温键合条件下,封装后样品的气密性优于3.0×10–4Pa.cm3/sHe;剪切力达4.7MPa以上;封装样品合格率达94%以上;通过热循环可靠性测试之后仍具有很好的气密性。BCB是一种较理想的圆片级低温气密性健合封装材料。  相似文献   

9.
设计了500×500个微加热器阵列,加热线条宽度分别为5μm,7μm,9μm.采用离子束溅射、光刻、湿法腐蚀等工艺,在Si衬底上制作了微加热器,加热层材料为Ni/Cr, Au, 厚度分别为400nm, 200nm.采用直流电源对加热器进行供电,在红外热像仪下观察,随着电压、电流的增加,加热区温度上升很明显.测试结果表明,该加热器可以用于(MEMS)芯片级气密封装.  相似文献   

10.
为维持MEMS硅微陀螺的真空度,利用两次硅-玻璃阳极键合和真空长期维持技术,实现了MEMS硅微陀螺的圆片级真空气密性封装。制作过程包括:先将硅和玻璃键合,在硅-玻璃衬底上采用DRIE工艺刻蚀出硅振动结构;再利用MEMS圆片级阳极键合工艺在10-5 mbar(1 mbar=100 Pa)真空环境中进行封装;最后利用吸气剂实现圆片的长期真空气密性。经测试,采用这种方式制作出的硅微陀螺键合界面均匀平整无气泡,漏率低于5.0×10-8 atm.cm3/s。对芯片进行陶瓷封装,静态下测试得出品质因数超过12 000,并对样品进行连续一年监测,性能稳定无变化。  相似文献   

11.
研究了空气阻尼对MEMS压阻加速度传感器性能的影响,建立了传感器动力学模型和空气阻尼模型,分析了空气间隙大小与传感器阻尼系数的相互关系,通过控制空气间隙可以达到控制加速度传感器阻尼的目的。根据分析结果设计了三明治结构封装的传感器,应用有限元仿真软件,对传感器的应力和应变进行了仿真计算,完成传感器结构参数设计;采用MEMS体硅加工工艺和圆片级封装工艺,制作了MEMS压阻加速度传感器。测试结果表明,采用三明治结构封装形式,可以控制压阻加速度传感器的阻尼特性,为提高传感器性能提供了途径。  相似文献   

12.
本文提出了一种可与CMOS工艺兼容的MEMS晶圆级铝锗键合工艺。根据铝锗共晶键合的特点,设计了键合工艺流程,并通过对键合工艺(包括键合温度、键合时间、键合压强)安排多次试验,获得了优化的铝锗共晶键合工艺条件,并成功应用于MEMS加速度计产品的制作。  相似文献   

13.
MEMS器件大都含有可动的硅结构 ,在器件加工过程中 ,特别是在封装过程中极易受损 ,大大影响器件的成品率。如果能在MEMS器件可动结构完成以后 ,加上一层封盖保护 ,可以显著提高器件的成品率和可靠性。本文提出了一种用于MEMS芯片封盖保护的金 硅键合新结构 ,实验证明此方法简单实用 ,效果良好。该技术与器件制造工艺兼容 ,键合温度低 ,有足够的键合强度 ,不损坏器件结构 ,实现了MEMS器件的芯片级封装。我们已经将此技术成功地应用于射流陀螺的制造工艺中  相似文献   

14.
由于MEMS器件的应用日益频繁,其可靠性研究就显得十分重要。介绍了引起可靠性问题的原因。以微机械加速度计为例,指出了该加速度计的可靠性问题,以及对其可靠性测试研究的内容。  相似文献   

15.
文中通过研究MEMS(微机电系统)加速计在SOIC封装(小外形集成电路封装)下的特性,针对MEMS芯片断裂故障的原因分析了影响PPM(百万分比的缺陷率)性能的主要封装工艺步骤。其中感应单元固晶胶的硬度是引起芯片断裂的主要参数,通过反向工程确定了可以同时满足感应单元固有频率和封装可靠性要求的固晶材料。在试验中采用固晶胶E后,MEMS加速计的SOIC封装呈现出更加强韧的特性。此研究对于改善MEMS加速计的PPM性能有一定参考价值。  相似文献   

16.
介绍了一种新型的基于MEMS体硅加工工艺的L形粱压阻微加速度传感器.在加工过程中采用Si-Si直接键合完成底板与传感器支撑框体之间的粘合,使得后续加工工艺更加简单;采用DRIE释放梁结构,从而保证了梁结构的完整性.分析了该传感器的结构参数和灵敏度,并用ANSYS进行了有限元模拟,同时介绍了其工艺流程,以及封装后的测试结果.芯片尺寸为3.8 mm×3.8 mm×0.82 mm,其中敏感质量块尺寸为2 mm×2 mm×0.4 mm,梁尺寸为2 200μm×100 μm×40μm.经初步测试,在采用5 V电源供电时灵敏度为0.5 mV/g左右,3 dB截止频率为520 Hz左右.  相似文献   

17.
综述了微电子机械系统(MEMS)封装主流技术,包括芯片级封装、器件级封装和系统及封装技术进行了。重点介绍了圆片级键合、倒装焊等封装技术。并对MEMS封装的技术瓶颈进行了分析。  相似文献   

18.
提出了一种具有"8悬臂梁-质量块"结构的新型三明治式硅微机械电容式加速度计,用微机械加工工艺在(111)硅片上制作出了具有信号输出的器件.该加速度计的惯性质量块由同一(111)硅片上下表面对称分布的8根悬臂梁支撑.这些悬臂梁是利用(111)硅在KOH溶液中的各向异性腐蚀特性结合深反应离子刻蚀(DRIE)实现的,其尺度精确可控,保证了结构的对称性.该加速度计的谐振频率为2.08kHz,品质因子Q为21.4,灵敏度为93.7mV/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号