首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用测定高温下保温不同时间后氧化层厚度的方法讨论分析了Fe-40%Ni合金的高温氧化行为,并通过回归分析得到了预测氧化层厚度的数学模型。结果表明,当温度低于1000 ℃时,合金氧化层增加的趋势相对较缓,超过1000 ℃后显著加快。随保温时间的延长,氧化层厚度以一定的速度增加,并与保温时间呈近似线性的关系,而当温度较高时则逐渐向抛物线型转变。回归分析表明,合金的氧化层厚度(μm)可用h=6700×t0.44×e-6870/T计算。  相似文献   

2.
描述了激光选择性烧结金属粉末快速成形设备的粉末供给和铺平压实系统及动作,探讨了烧结过程参数对烧结质量的影响,粘结剂含量、孔隙率和缺陷尺寸与烧结件压缩强度之间的关系,并指出影响激光选择性烧结的重要因素是烧结粉末的特性、激光参数的设置等。  相似文献   

3.
《铸造技术》2017,(7):1678-1680
研究了烧结温度、激光功率和扫描速度对选择性激光烧结成型件精度及力学性能的影响。结果表明:适当调整选择性激光烧结成型机的激光功率和扫描速度及烧结温度,能有效提高成型件的精度及抗拉强度,在激光功率为24 W、扫描速度为2 500 mm/s、烧结温度为80℃时,成型件的尺寸精度为100±0.1 mm,抗拉强度为1.96 MPa。  相似文献   

4.
多组分铜基金属粉末选择性激光烧结成形的工艺研究   总被引:1,自引:0,他引:1  
沈以赴  顾冬冬  王蕾  薛松柏 《铸造》2005,54(7):659-664
对多组分铜基金属粉末(组分包括纯Cu,预合金CuSn和CuP)进行了选择性激光烧结试验,其成形机制为粉末部分熔化状态下的液相烧结机制.研究了激光功率、光斑直径、扫描速率、扫描间距、铺粉厚度等工艺参数对粉末激光烧结致密化的影响.为便于整体调控激光烧结过程,本文将各工艺参数综合为"能量体密度"这一个参数,结果表明,增加激光功率或减小扫描速率能增加液相生成量,且利于液相的铺展和流动,进而提高润湿性和烧结性;扫描速率越高,则越易引起"球化"现象.减小铺粉厚度有利于获得较好的层间结合,并提高烧结致密度;若铺粉厚度过小,会降低铺粉均匀性,进而有损层间结合性.减小扫描间距使烧结线从断续分布转变为较为平整的结合状态,进而提高烧结致密度.当能量体密度增至一临界值(约0.15 kJ/mm3)时,烧结致密度有显著提高;但若增至过高(大于0.30 kJ/mm3),烧结致密度则呈下降趋势.  相似文献   

5.
工艺参数对316不锈钢粉末激光烧结温度场的影响   总被引:1,自引:1,他引:0  
以有限元分析软件ANSYS为平台,对316不锈钢粉末激光烧结温度场分布进行了数值模拟.在考虑了材料的热物性参数随温度变化以及相变潜热等非线性情况下,建立了选择性激光烧结(SLS)三维有限元模型,利用ANSYS参数化设计语言APDL控制激光热源的热流密度、移动速度以及扫描路径,研究了工艺参数(激光功率、扫描速度、预热温度)对316不锈钢金属粉末成型过程中熔池及温度场分布产生的影响.模拟结果与前人文献实验结果相吻合,表明可以利用本模型对工艺参数进行优化,为实验工艺参数选取提供了理论依据.  相似文献   

6.
工艺参数对选择性激光烧结制件精度的影响   总被引:1,自引:0,他引:1  
激光功率、扫描速度、扫描间距等烧结工艺参数对选择性激光烧结制件的精度有很大影响.通过理论分析以及实际对316L不锈钢粉末材料的烧结,采用单因素试验,分别研究了这三个影响因素和制件精度之间的关系.通过对实验结果的方差分析,得出其优化的烧结参数为:激光功率83W、扫描速度16 mm/B、扫描间距1/6 mm,制件尺寸精度可达到±0.05 mm.  相似文献   

7.
从理论和试验两个方面对选择性激光烧结件精度的影响因素进行了研究,验证了激光烧结参数、烧结温度等对制件精度的影响.针对影响烧结金属粉末尺寸精度的工艺参数,以316不锈钢粉末为试验材料,以制件尺寸为测量指标,优化了一组烧结参数:激光功率为83 W、扫描速度为 16 mm/s、烧结间距为0.165 mm、单层厚度为0.1 mm,精度可达到±0.05 mm,用此工艺参数成功地烧制出了金属原型件.  相似文献   

8.
阐述了选择性激光烧结(SLS)的成型原理,并将此成型方式运用于直接砂型制作。通过用自主研制的快速成型机进行烧结试验,采用正交试验和方差分析,对影响铸造砂型精度的工艺参数进行了优化设计,得到激光功率、扫描速度、扫描间距及铺粉厚度工艺参数的最佳组合,可为基于选择性激光烧结铸造砂型的制造提供指导和参考。  相似文献   

9.
鲍飞  封雪平  缪锋  韩韡 《铸造技术》2018,(4):790-793
通过正交试验方法研究了激光工艺参数对选择性激光烧结覆膜砂型强度的影响规律,方差计算结果表明:激光功率、扫描速度、扫描间距对覆膜砂烧结初坯抗拉强度和抗弯强度变化具有显著性影响,并呈现不同的影响趋势。在所选的激光作用因素和水平组合中,选用激光功率65 W、扫描速度3 m·s~(-1)及扫描间距0.15 mm时,获得了最优强度性能。  相似文献   

10.
概述了选择性激光烧结(SLS)金属零件的后处理对改善结构完整性和诱导材料变形的影响.介绍了后处理液相烧结温度和时间对材料性能的影响.叙述了热等静压工艺,并论述了它在金属SLS零件中的应用.使用结果表明,热等静压适用于获得几乎全密实的零件.  相似文献   

11.
以羰基铁粉和羰基镍粉为原料,采用金属注射成形(MIM)工艺制备Fe-50%Ni软磁合金.通过对不同工艺条件下试样的杂质含量、密度、金相组织和磁性能的分析,研究显微结构和杂质对磁性能的影响.结果表明:孔隙是影响MIM Fe-50%Ni饱和磁感应强度的主要因素,孔隙、杂质和晶粒尺寸是影响磁导率和矫顽力的因素;最大磁导率、初始磁导率和矫顽力之间存在一定的联系,矫顽力可以作为最大磁导率和初始磁导率的参考依据.通过对比分析孔隙度、杂质含量和晶粒尺寸对矫顽力的影响规律,发现晶粒尺寸是影响MIM Fe-50%Ni合金矫顽力的主要因素.  相似文献   

12.
采用激光选区熔化方法制备了高致密度GH3536镍基高温合金块状试件,分析了激光选区熔化成形GH3536合金显微组织和晶体取向。结果表明:随着激光能量密度的升高,成形试样的致密度先升高后降低,当激光能量密度为180~230J.m-1时,致密度达到99.55%以上;其组织存在着明显的各向异性,垂直于构建方向的微观组织呈“棋盘状”形貌,晶粒大多数为等轴晶(长径比为1.828μm)且得到了细化(dmean=11.226μm),尤其熔池搭接区域晶粒更加细小(5μm以下),而平行于构建方向为“鱼鳞状”形貌,大多数为柱状晶(长径比为2.831μm),晶粒直径较大(dmean=25.964μm)。同时SLM成形GH3536镍基高温合金存在明显的择优取向,横截面上晶粒具有较强的取向< 100 >取向,垂直于构建方向和平行于构建方向均为立方织构{100}<001>。此外SLM凝固成形中晶粒生长对晶粒内晶体取向演变有着显著影响,纵截面变形晶粒内的晶体取向变化不明显,纵截面变形晶粒内的晶体取向变化比较明显,这是由于SLM成形具有极高的温度梯度和快速的冷却速率(105K/s)导致的。  相似文献   

13.
利用选区激光熔化(SLM)工艺制备TiCx增强Ti基纳米复合材料试件;通过X射线衍射仪和场发射扫描电子显微镜等研究激光线能量密度η(激光功率与扫描速率之比)对选区激光熔化试件的致密化过程、物相及显微组织的影响规律,并讨论激光快速熔凝过程中TiC0.625层片状纳米结构的形成机理.结果表明:当激光线能量密度η为1 100 J/m时,成形试件的致密度可达95.6%;其内部增强体为层片状纳米结构,平均厚度为54 nm,且在Ti基体中分布均匀.增强相TiCx以亚化学计量TiC0.625形式存在,具有立方晶体结构.  相似文献   

14.
采用选区激光熔化(SLM)和选区电子束熔化(SEBM)技术成形纯钨,对比研究了两种成形方法对纯钨的宏/微观组织和力学性能的影响,利用SEM和EBSD等表征技术,分析了裂纹萌生位置及形成机制。研究结果表明,通过调控纯钨打印过程的工艺参数,可有效地减少 SLM和SEBM成形样品内部的裂纹。SLM和SEBM打印态纯钨的致密度和硬度与输入样品的能量密度呈正比例关系。与SLM相比,SEBM成形时样品内部的温度梯度更低,热应力累积更少,成形后样品中的裂纹更少。SLM打印态样品的内部裂纹多存在于搭接区域,SLM和SEBM制备过程中产生的裂纹均具有沿晶界分布的特征,而且裂纹多萌生于大角度晶界。  相似文献   

15.
采用选区激光熔化技术成形K536合金并对其进行后处理,分别分析了沉积态、退火态、退火+固溶态、退火+固溶+热等静压态合金试样的显微组织和力学性能.结果表明:沉积态试样横、纵向截面均产生微裂纹;退火态试样的横向截面组织为等轴晶,纵向晶粒形态为柱状晶,且晶粒尺寸波动较大,形成了交替分布的细晶区和粗晶区;退火+固溶态试样发生...  相似文献   

16.
为明确热处理对选区激光熔化(SLM)钴铬合金成形件组织、性能的影响,利用OM、SEM、XRD、EBSD、EPMA、力学性能和电化学测试研究了激光功率为290 W、扫描速度为950 mm/s下SLM成形的钴铬合金在1150℃保温6 h的热处理前后的微观组织和性能变化。结果表明,钴铬合金成形件经过热处理后,典型熔池形貌消失,可在晶界和晶内观察到明显析出的碳化物,晶粒由粗大的柱状晶转变为细小的等轴晶,耐腐蚀性能降低,硬度变化较小,而伸长率提高约30%。通过热处理可以获得均匀的微观组织,提高γ相的体积分数,提升成形件的塑性,但会降低成形件电化学腐蚀性能。  相似文献   

17.
激光选区熔化(selective laser melting, SLM)成形技术可实现形状复杂、尺寸精度高、力学性能优异零部件的直接成形,但成形工艺参数选择不当,则会在产品中引入缺陷,针对SLM成形钛合金内部缺陷的问题,研究了激光功率和扫描速度2个主要成形工艺参数对钛合金内部缺陷类型、尺寸及数量的影响,探索了缺陷的演化规律。结果表明,SLM成形钛合金内部主要有不规则形状、规则球形2种形态的缺陷。低激光功率(≤130W)、高扫描速度(≥900mm/s)区域主要为不规则形状缺陷,能量不足是导致形成该类型缺陷的主要原因;高激光功率(≥190 W)、低扫描速度(≤600 mm/s)区域主要为规则球形缺陷,能量过高导致合金元素气化是产生这类缺陷的主要原因。随着能量密度的增加,根据缺陷的演化规律绘制了SLM成形钛合金加工图,其中缺陷的演化呈现3个阶段,即不规则形状缺陷尺度逐渐降低区,微尺度不规则缺陷向微尺度规则球形缺陷过渡区和规则球形缺陷逐渐长大区。  相似文献   

18.
主要研究了激光选区熔化(selective laser melting,SLM)成形Inconel 718合金经固溶时效(SA)、均匀化+固溶时效(H+SA)、热等静压+固溶时效(HIP+SA)3种热处理后显微组织结构的转变与力学性能之间的关系.结果表明,沉积态试样的晶粒内部存在大量树枝晶结构,枝晶间析出了大量硬脆La...  相似文献   

19.
Selective laser melting (SLM) is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance. Particulate-reinforced aluminum matrix composites (PAMCs) are important materials for various applications due to the combined properties of Al matrix and reinforcements. Considering the advantages of SLM technology and PAMCs, the novel SLM PAMCs have been developed and researched in recent years. Therefore, the current research progress about the SLM PAMCs is reviewed. Firstly, special attention is paid to the solidification behavior of SLM PAMCs. Secondly, the important issues about the design and fabrication of high-performance SLM PAMCs, including the selection of reinforcement, the influence of parameters on the processing and microstructure, the defect evolution and phase control, are highlighted and discussed comprehensively. Thirdly, the performance and strengthening mechanism of SLM PAMCs are systematically figured out. Finally, future directions are pointed out on the advancement of high-performance SLM PAMCs.  相似文献   

20.
China Foundry - Inconel 718 alloys were fabricated by selective laser melting under different scanning speeds to investigate the change of the morphology of molten pool, direction of grain growth,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号