首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Kasamo K 《Plant physiology》1988,87(1):126-129
Proton-translocating ATPase (H+-ATPase) was purified from mung bean (Vigna radiata L.) roots. Treatment of this enzyme with the arginine-specific reagent 2,3-butanedione in the presence of borate at 37°C (pH 7.0), caused a marked decrease in its activity. Under this condition, half-maximal inhibition was brought about by 20 millimolar 2,3-butanedione at 12 minutes. MgATP and MgADP, the physiological substrate and competitive inhibitor of the ATPase, respectively, provided partial protection against inactivation. Loss of activity followed pseudo-first order kinetics with respect to 2,3-butanedione concentration, and double log plots of pseudo-first order rate constants versus reagent concentration gave a curve with a slope of 0.984. Thus, inactivation may possibly result from reaction of one arginine residue at each active site of the enzyme. The results obtained from the present study indicate that at least one arginyl residue performs an essential function in the plasma membrane H+-ATPase, probably at the catalytic site.  相似文献   

2.
The 2′,3′-dialdehyde derivative of ATP (dial-ATP) has been shown to be an affinity label for the ATP binding site of the H+-ATPase from tonoplast of etiolated mung bean seedlings (Vigna radiata L.). The dial-ATP caused marked inactivation of enzymatic activities of both membrane-bound and soluble ATPase and its associated proton translocation. The inactivation was reversible, but could be stabilized by NaBH4. The sodium dodecyl sulfatepolyacrylamide gel electrophoresis pattern revealed that the dial-ATP binding site was in the large (A) subunit of ATPase. The inhibition could be substantially protected by its physiological substrate ATP, pyrophosphate, and nucleotides in the decreasing order: ATP > pyrophosphate > ADP = AMP > GTP > CTP = UTP. A Lineweaver-Burk plot showed that the mode of inhibition was competitive with respect to ATP. Loss of ATPase activity followed pseudo-first order kinetics with a Ki of 4.1 millimolar, a minimum inactivation half-time of 20 seconds, and a pseudo-first order rate constant of 0.035 s−1. The double logarithmic plot of apparent rate constant versus dial-ATP concentration gave a slope of 0.927, indicating that inactivation results from reaction of at least one lysine residue at the catalytic site of the large subunit. Labeling studies with [3H]dial-ATP indicate that the incorporation of approximately 1 mole of dial-ATP per mole ATPase is sufficient to completely inhibit the ATPase. A working model of nonequivalent subunits for enzymatic mechanism of vacuolar ATPase is suggested.  相似文献   

3.
A H+-translocating inorganic pyrophosphatase (H+-PPase) was associated with low density membranes enriched in tonoplast vesicles of oat roots. The H+-PPase catalyzed the electrogenic transport of H+ into the vesicles, generating a pH gradient, inside acid (quinacrine fluorescence quenching), and a membrane potential, inside positive (Oxonol V fluorescence quenching). Transport activity was dependent on cations with a selectivity sequence of Rb+ = K+ > Cs+; but it was inhibited by Na+ or Li+. Maximum rates of transport required at least 20 millimolar K+ and the Km for this ion was 4 millimolar. Fluoride inhibited both ΔpH formation and K+-dependent PPase activity with an I50 of 1 to 2 millimolar. Inhibitors of the anion-sensitive, tonoplast-type H+-ATPase (e.g. a disulfonic stilbene or NO3) had no effect on the PPase activity. Vanadate and azide were also ineffective. H+-pumping PPase was inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide, but its sensitivity to N,N′-dicyclohexylcarbodiimide was variable. The sensitivity to ions and inhibitors suggests that the tonoplast H+-PPase and the H+-ATPase are distinct activities and this was confirmed when they were physically separated after Triton X-100 solubilization and Sepharose CL-6B chromatography. H+ pumping activity was strongly affected by Mg2+ and pyrophosphate (PPi) concentrations. At 5 millimolar Mg2+, H+ pumping showed a KmaPP for PPi of 15 micromolar. The rate of H+ pumping at 60 micromolar PPi was often equivalent to that at 1.5 millimolar ATP. The results suggest PPi hydrolysis could provide another source of a proton motive force used for solute transport and other energy-requiring processes across the tonoplast and other membranes with H+-PPase.  相似文献   

4.
An H+-translocating inorganic pyrophosphatase (PPase) was isolated and purified from red beet (Beta vulgaris L.) tonoplast. One major polypeptide of molecular weight 67 kilodalton copurified with fluoride-inhibitable PPase activity when subjected to one-dimensional polyacrylamide gel electrophoresis. Overall, a 150-fold purification of the PPase was obtained, from the tonoplast fraction, through anion exchange chromatography of the detergent-solubilized membranes followed by ammonium sulfate precipitation and gel filtration chromatography. The purified polypeptide showed no cross-reactivity with antibodies raised against the 67 kilodalton subunit of the tonoplast ATPase.  相似文献   

5.
Particulate cytochromes of mung bean seedlings   总被引:2,自引:1,他引:1       下载免费PDF全文
Efforts have been made to solubilize cytochrome components from particulate fractions of etiolated mung bean seedlings. Low temperature spectrophotometry reveals that the cytochrome composition of mitochondria isolated from whole seedlings is the same as that reported by Bonner for mung bean hypocotyls. On the basis of the identity in position of the α-bands in low temperature difference spectra for mitochondria, for a partially purified haemoprotein from mitochondria, and for purified cytochrome b-555, it is suggested that cytochrome b-555 is an intrinsic component of mung bean mitochondria. Difference spectra show that both the mitochondrial and microsomal fractions contain at least 2 b-type cytochromes. Cytochrome b-555 is almost certainly present in the microsomes, since the low temperature difference spectrum for the cytochrome is identical with the spectrum for this particulate fraction.

By freezing and thawing mung bean mitochondria in 4% cholate and centrifuging, cytochrome oxidase activity can be concentrated in the supernatant fraction, although it is not completely solubilized. The oxidase is inhibited by high concentrations of cytochrome c. A particle-bound cytochrome c can be obtained from mitochondria by digestion with snake venom. However, the autoxidizability of the preparation indicates that the cytochrome has been solubilized in a modified form. A CO-binding pigment can be obtained from mung bean microsomes by digestion with snake venom.

  相似文献   

6.
The uptake of phenylalanine was studied with vacuole isolated from barley mesophyll protoplasts. The phenylalanine transport exhibited saturation kinetics with apparent Km-values of 1.2 to 1.4 millimolar for ATP- or PPi-driven uptake; Vmax app was 120 to 140 nanomoles Phe per milligram of chlorophyll per hour (1 milligram of chlorophyll corresponds to 5 × 106 vacuoles). Half-maximal transport rates driven with ATP or PPi were reached at 0.5 millimolar ATP or 0.25 millimolar PPi. ATP-driven transport showed a distinct pH optimum at 7.3 while PPi-driven transport reached maximum rates at pH 7.8. Direct measurement of the H+-translocating enzyme activities revealed Km app values of 0.45 millimolar for ATPase (EC 3.6.1.3) and 23 micromolar for pyrophosphatase (PPase) (EC 3.6.1.1). In contrast to the coupled amino acid transport, ATPase and PPase activities had relative broad pH optima between 7 to 8 for ATPase and 8 to 9 for PPase. ATPase as well as ATP-driven transport was markedly inhibited by nitrate while PPase and PPi-coupled transport was not affected. The addition of ionophores inhibited phenylalanine transport suggesting the destruction of the electrochemical proton potential difference Δ μH+ while the rate of ATP and PPi hydrolysis was stimulated. The uptake of other lipophilic amino acids like l-Trp, l-Leu, and l-Tyr was also stimulated by ATP. They seem to compete for the same carrier system. l-Ala, l-Val, d-Phe, and d-Leu did not influence phenylalanine transport suggesting a stereospecificity of the carrier system for l-amino acids having a relatively high hydrophobicity.  相似文献   

7.
The effects of three arginine-specific reagents on uptake were studied using corn seedlings (Zea mays L., GoldenCross Bantam). In the presence of borate, 0.25 mM 2, 3-butanedione(BD) and 1.0 mM 1, 2-cyclohexanedione (CHD) inhibited uptake by 76% and 68%, respectively, compared tothe controls. However, in the absence of borate, only 18% and38% inhibition was observed for 0.25 mM BD and 1.0 mM CHD, respectively.Similarly, 0.5 mM phenylglyoxal (PGO) resulted in 75% inhibition.The degree of inhibition of nitrate uptake exhibited a concentration-dependencewith respect to the reagents. Corn seedlings are 2- or 3-foldmore sensitive to BD than to PGO and CHD, respectively, presumablydue to the unfavourable steric effects of the benzal ring. Uptakeof was partially restored after removal of BD, CHD, and PGO from the uptake medium. No significant differenceswere observed for the ATPase and plasma membrane-associatedvanadate-sensitive H+-ATPase or K+-stimulated ATPase activityin homogenates and microsomal fractions prepared from corn seedlingswhich had been incubated for 2 h in the presence or absenceof 0.5 mM BD or 1.0 mM PGO. This suggests that inhibition ofnitrate uptake by the arginine-specific reagents was not causedby the indirect effect of their binding and inhibiting H+-ATPase.The fact that the arginine-specific reagents strongly inhibit uptake indicates that the transport system has arginine residues at or near the activesite. Key words: Arginine-specific reagents, borate effect, nitrate uptake, reversibility  相似文献   

8.
Yoshida S 《Plant physiology》1991,95(2):456-460
The processes involved in adaptation to cold temperature were examined by growing suspension cultured cells of mung bean (Vigna radiata [L.] Wilczek) at 2°C for various periods of time and assaying the activities of various membrane-bound enzymes in vitro. The tonoplast H+-ATPase activity and the ATP-proton transport extracted from cells incubated at 2°C declined rapidly and reached a minimum level after 10 hours. The inactivation was reversible within 24 hours of chilling. The recovery of the cold-inactivated H+-ATPase was found to proceed in two steps, a faster recovery of ATP hydrolysis activity and a slower recovery of the proton transport. The recovery was markedly inhibited by the presence of azide, but not affected by 0.578 millimolar cycloheximide. This suggested the involvement of an energy process that had no requirement for de novo synthesis of protein. The cold-induced inactivation of the H+-ATPase may be due to a structural alteration of the enzyme. The slower recovery of proton transport relative to ATP hydrolysis during warming suggests that the protogenic domains in the enzyme may be affected differently by chilling.  相似文献   

9.
Aloni B  Daie J  Wyse RE 《Plant physiology》1988,88(2):367-369
Leaf discs of broad bean (Vicia faba L.), peeled on the spongy mesophyll side, rapidly altered the pH of the surrounding medium (apoplast). Using pH indicator paper appressed against the leaf, immediately after peeling, initial apoplastic pH was estimated to be 4.5. Changes in the apoplastic pH were measured with a microelectrode placed into a 100-microliter drop of an unbuffered solution (2 millimolar KCl, 0.5 millimolar CaCl2, and 200 millimolar mannitol) on the peeled surface. Discs acidified the medium until the pH stabilized at about 5.0 (about 10 minutes). Acidification was inhibited by 50 micromolar sodium vanadate, an inhibitor of the plasmalemma H+-ATPase and attenuated by omitting the osmoticum or potassium ions from the medium. Fusicoccin (10 micromolar) greatly enhanced the rate of acidification. The presence of 0.1 to 1 micromolar gibberellic acid resulted in a slower rate of medium acidification. Gibberellic acid appeared to modulate the activity of the H+-translocating ATPase located at the plasma membrane of the mesophyll cells.  相似文献   

10.
A high-hydrostatic-pressure technique was employed to study the structure-function relationship of plant vacuolar H+-ATPase from etiolated mung bean seedlings (Vigna radiata L.). When isolated vacuolar H+-ATPase was subjected to hydrostatic pressure, the activity of ATP hydrolysis was markedly inhibited in a time-, protein concentration- and pressure-dependent manner. The pressure treatment decreased both V max and K m of solubilized vacuolar H+-ATPase, implying an increase in ATP binding affinity, but a decrease in the ATP hydrolysis activity. Physiological substrate, Mg2+-ATP, augmented the loss of enzymatic activity upon pressure treatment. However, ADP, AMP, and Pi exerted substantial protective effects against pressurization. Steady-state ATP hydrolysis was more sensitive to pressurization than single-site ATPase activity. The inactivation of solubilized vacuolar H+-ATPase by pressure may result from changes in protein–protein interaction. The conformational change of solubilized vacuolar H+-ATPase induced by hydrostatic pressure was further determined by spectroscopic techniques. The inhibition of vacuolar H+-ATPase under pressurization involved at least two steps. Taken together, our work indicates that subunit–subunit interaction is crucial for the integrity and the function of plant vacuolar H+-ATPase. It is also suggested that the assembly of the vacuolar H+-ATPase complex is probably not random, but follows a sequestered pathway.  相似文献   

11.
Glucuronokinase (EC 2.7.1.43) activity was detected in etiolated seedlings of corn, mung bean and soybean. Biosynthesis of glucuronokinase is not limited to seedlings, because expanding green leaves of corn produced almost as much glucuronokinase activity as etiolated seedlings when data were expressed on the basis of soluble protein. The enzyme was also present in extracts of tobacco callus and Lilium longiflorum pollen, with more enzyme activity obtained from pollen than any other source. Detection of glucuronokinase in green leaves of of mung bean was precluded by the presence of an enzyme inhibitor.  相似文献   

12.
The effect of low pH on net H+ release and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.) seedlings was investigated in short-term experiments at constant pH. Broad bean was more sensitive to low pH than corn: the critical values (pH values below which net H+ release and root growth ceased) were pH 4.00 (broad bean) and pH 3.50 (corn) at 1 millimolar Ca2+. Both proton release and root growth were progressively inhibited as the medium pH declined. Additional Ca2+ in the root medium helped to overcome the limitations of low pH for net H+ release and root growth. Potassium (for corn) and abscisic acid (for broad bean) increased both net H+ release and root growth rate at the critical pH value. It is concluded that poor root growth at low pH is caused by a lack of net H+ release that may decrease cytoplasmic pH values. Inhibited net H+ release at high external H+ activity is not due to a shortage of energy supply to the H+ ATPase. Instead, a displacement of Ca2+ by H+ at the external side of the plasmalemma may enhance reentry of H+ into root cells.  相似文献   

13.
Two different forms of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been purified from etiolated and green leaves, respectively, of 6-day maize (Zea mays L. cv Fronica) seedlings. The procedure includes an ammonium sulfate step, an ion exchange chromatography, and a second gel filtration in Sephadex G-200 in the presence of NADP+ to take advantage of the corresponding molecular weight increase of the enzyme. The isozyme from etiolated leaves is more stable and has been purified up to 200-fold. Subunit molecular weight, measured by sodium dodecyl sulfate-gel electrophoresis, is 54,000. The active protein, under most conditions, has a molecular weight 114,000, which doubles to molecular weight 209,000 in the presence of NADP+. The association behavior of enzyme from green leaves is similar, and the molecular weight of the catalytically active protein is also similar to the form of etiolated leaves.

Glucose 6-phosphate dehydrogenase of dark-grown maize leaves isoelectric point (pI) 4.3 is replaced by a form with pI 4.9 during greening. The isozymes show some differences in their kinetic properties, Km of NADP+ being 2.5-fold higher for pI 4.3 form. Free ATP (Km = 0.64 millimolar) and ADP (Km = 1.13 millimolar) act as competitive inhibitors with respect to NADP+ in pI 4.3 isozyme, and both behave as less effective inhibitors with pI 4.9 isozyme. Magnesium ions abolish the inhibition.

  相似文献   

14.
The cytoplasmic pH and the vacuolar pH in root-tip cells ofintact mung bean seedlings under high-NaCl stress were measuredby in vivo 31P-nuclear magnetic resonance (31P-NMR) spectroscopy.When roots were incubated with high levels (100 mM) of NaClat the control external concentration (0.5 mM) of Ca2+ ions,the vacuolar pH increased rapidly from 5.6 to 6.2 within 3 h,while the cytoplasmic pH only decreased by a mere 0.1 pH uniteven after a 24-h incubation under high-NaCl conditions. Theincrease in vacuolar pH induced by the high-NaCl stress wasdiminished by an increase in the external concentration of Ca2+ions from 0.5 mM to 5 mM. The intracellular concentration ofNa+ ions in the root-tip cells increased dramatically upon perfusionof the root cells with 100 mM NaCl, and high external levelsof Ca2+ ions also suppressed the in flow of Na+ ions into thecells. The vacuolar alkalization observed in salt-stressed rootsmay be related to the inhibition of an H+-translocating pyrophosphatasein the tonoplast, caused by the increase in the cytoplasmicconcentration of Na+ ions. It is suggested that, although thevacuolar pH increased markedly under salt stress, the cytoplasmicpH was tightly regulated by some unidentified mechanisms, suchas stimulation of the H+-translocating ATPase of the plasmalemma,in roots of mung bean under salt stress. (Received April 18, 1992; Accepted July 6, 1992)  相似文献   

15.
Salt modulation of the tonoplast H+-pumping V-ATPase and H+-PPase was evaluated in hypocotyls ofVigna unguiculata seedlings after 3 and 7 days of treatment. In 3-day-old seedlings, treatment with 100 mmol/L NaCl decreased the proton transport and hydrolytic activities of both the V-ATPase and the H+-PPase. After 7 days, the proton transport and hydrolysis activities of the V-ATPase were higher, while the H+-PPase activities were lower in seedlings. Western blot analysis of A- and B-subunits of V-ATPase revealed that the protein content of the two subunits varied in parallel with their activities, i.e. to a higher activity corresponded a higher protein content of the subunits and vice versa. Contrarily, Western blot analysis of H+-PPase levels failed to show any correlation with PPase activity, suggesting a partial enzyme inactivation. The results indicate that salt stress induces V-ATPase expression inV. unguiculata with concomitant enhancement of its activity as a homeostatic mechanism to cope with salt stress. Under the same conditions PPase is inhibited.  相似文献   

16.
Enzymological basis for herbicidal action of glyphosate   总被引:8,自引:8,他引:0       下载免费PDF全文
The effects of 1 millimolar glyphosate (N-[phosphonomethyl]glycine) upon the activities of enzymes of aromatic amino acid biosynthesis, partially purified by ion-exchange chromatography from mung bean seedings (Vigna radiata [L.] Wilczek), were examined. Multiple isozyme species of shikimate dehydrogenase, chorismate mutase, and aromatic aminotransferase were separated, and these were all insensitive to inhibition by glyphosate. The activities of prephenate dehydrogenase and arogenate dehydrogenase were also not sensitive to inhibition. Two molecular species of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase were resolved, one stimulated several-fold by Mn2+ (DAHP synthase-Mn), and the other absolutely dependent upon the presence of Co2+ for activity (DAHP synthase-Co). Whereas DAHP synthase-Mn was invulnerable to glyphosate, greater than 95% inhibition of DAHP synthase-Co was found in the presence of glyphosate. Since Co2+ is a Vmax activator with respect to both substrates, glyphosate cannot act simply by Co2+ chelation because inhibition is competitive with respect to erythrose-4-phosphate. The accumulation of shikimate found in glyphosate-treated seedlings is consistent with in vivo inhibition of both 5-enolpyruvylshikimic acid 3-phosphate synthase and one of the two DAHP synthase isozymes. Aromatic amino acids, singly or in combination, only showed a trend towards reversal of growth inhibition in 7-day seedlings of mung bean. The possibilities are raised that glyphosate may act at multiple enzyme targets in a given organism or that different plants may vary in the identity of the prime enzyme target.  相似文献   

17.
Plasma membrane H+-translocating ATPase was partially purifiedfrom mung bean (Phaseolus mungo L.) roots and reconstitutedinto soybean phospholipid (asolectin) liposomes by the n-octylglucosidedilution method. The resulting proteoliposomes were mainly unilamellarvesicles ranging in size from 0.05 to 0.2 µm. The existenceof ATP-drived H+-pumping across the proteoliposomes was demonstratedby the quenching of quinacrine fluorescence in the presenceof Mg2+. The quenching could be abolished by an uncoupler, FCCP,and an inhibitor of H+-translocating ATPase, vanadate. The reconstitutedATPase consisted of three major polypeptides of 105 KDa, 67KDa and 57 KDa. Its pH optimum, divalent cation stimulationand vanadate sensitivity were similar to those of partiallypurified ATPase. However, the specificity toward ATP was muchgreater following reconstitution. Also reconstitution reducedthe degree of inhibition by DCCD. Local anesthetics (e.g. dibucaine)had no effect on H+-pumping activity but increased the ATPaseactivity when proteoliposomes were reconstituted in their presence. (Received May 2, 1986; Accepted October 17, 1986)  相似文献   

18.
Corn (Zea mays L. cv Trojan T929) coleoptile membranes were fractionated on isopycnic sucrose density gradients. Two peaks of ATP-driven H+-transport activity, corresponding to the previously characterized tonoplast (1.07 grams per cubic centimeter) and Golgi (1.13 grams per cubic centimeter) fractions (Chanson and Taiz, Plant Physiol 1985 78: 232-240) were localized. Coincident with these were two peaks of inorganic pyrophosphate (PPi)-driven H+-transport. At saturating (3 millimolar) concentrations of Mg2+:ATP, the rate of proton transport was further enhanced by the addition of 3 millimolar PPi, and the stimulation was additive, i.e. equal to the sum of the two added separately. The specific PPi analog, imidodiphosphate, antagonized PPi-driven H+-transport, but had no effect on ATP-driven transport. Moreover, PPi-dependent proton transport in both tonoplast-enriched and Golgi-enriched fractions was strongly promoted by 50 millimolar KNO3, unlike the ATP-dependent H+-pumps of the same membranes. Taken together, the results indicate that PPi-driven proton transport is mediated by specific membrane-bound H+-translocating pyrophosphatases. Both potassium and a permanent anion (NO3 > Cl), were required for maximum activity. The PPi-driven proton pumps were totally inhibited by N,N′-dicyclohexylcarbodiimide, but were insensitive to 100 millimolar vanadate. The PPi concentration in coleoptile extracts was determined using an NADH oxidation assay system coupled to purified pyrophosphate:fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90). The total pyrophosphate content of corn coleoptiles was 20 nanomoles/gram fresh weight. Assuming a cytoplasmic location, the calculated PPi concentration is sufficient to drive proton transport at 20% of the maximum rate measured in vitro for the tonoplast-enriched fraction, and 10% of the maximum rate for the Golgi-enriched fraction.  相似文献   

19.
20.
Time courses of cytoplasmic and vacuolar pH changes under salt stress were monitored by in vivo31P-nuclear magnetic resonance spectroscopy in intact cells of Nitellopsis obtusa. When cells were treated with 100 millimolar NaCl for 2 hours, the cytoplasmic pH deceased from 7.2 to 7.0, while the vacuolar pH increased from 4.9 to 5.2. This salt-induced breakdown of the pH gradient between the cytoplasm and the vacuole was also confirmed through direct measurements of change in vacuolar pH with a micro-pH electrode. We speculate that the intracellular pH changes induced by the salt stress mainly results from the inhibition of the H+-translocating pyrophosphatase in the vacuolar membrane, since this H+-translocating system is sensitive to salt-induced increase in the cytoplasmic [Na+] and a simultaneous decrease in the cytoplasmic [K+]. Since disturbance of the cytoplasmic pH value should have serious consequences on the homeostasis of living cells, we propose that the salt-induced intracellular pH changes are one of initial and important steps that lead to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号