首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了提高LY12铝合金表面钒/锆转化膜的耐蚀性,采用单因素试验对钒/锆转化膜进行8-羟基喹啉耐蚀改性研究。采用扫描电镜(SEM)、能谱分析(EDS)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)分析了改性后转化膜的形貌及成分,采用中性盐雾(NSS)和电化学测试研究了其耐蚀性能。结果表明:采用0.1 g/L8-羟基喹啉,4.0 g/L偏钒酸钠,2.5 g/L氟锆酸钾为转化液,在p H值为4.0,温度70℃下转化35 min,LY12铝合金表面便形成了钒、锆氧化物及8-羟基喹啉薄层转化膜,使得铝合金腐蚀电位较改性前正移了41 m V,腐蚀电流密度减小了79.7%,盐雾时间由改性前的24 h增加至改性后的72 h,其耐蚀性能大幅度提高。  相似文献   

2.
贺旭东  郭瑞光 《材料保护》2013,(11):44-46,50,7
为了提高偏钒酸铵、氟硅酸盐转化液制备的镁合金表面无铬转化膜的耐蚀性能,在该转化液中加入硝酸铈制备了V-Ce复合转化膜。采用单因素试验对转化液中的有效耐蚀成分偏钒酸铵和硝酸铈的浓度和反应条件进行了优化;采用扫描电镜和能谱分析转化膜的形貌和成分,采用中性盐雾试验考察了膜层的耐蚀性能。结果表明:最佳转化膜成膜条件为1.20 g/L偏钒酸铵、0.24 g/L氟硅酸盐、4.00 g/L硝酸铈,pH值为2.0~3.0,50℃,20~30 min;最佳条件获得的转化膜主要由24%V,17%Ce,13%Mg,16%O(质量分数)组成,转化膜中的无定形结构和高含量的耐蚀钒、铈氧化物成分使其耐蚀性能显著提高,转化膜自腐蚀电位较基体正移了141mV,腐蚀电流密度仅为基体的1/26,耐盐雾时间达72 h。  相似文献   

3.
单一硅烷转化膜对金属基体的保护不足,稀土处理可对硅烷转化膜进行改性。以硅烷γ-APS协同稀土镧盐处理6061铝合金板材,在硅烷基础溶液中添加不同含量的稀土硝酸镧对6061铝合金进行转化处理,采用电化学方法和硫酸铜点滴方法,研究了硝酸镧含量对铝合金基体表面γ-氨丙基三乙氧基硅烷(KH-602)硅烷膜耐蚀性能的影响,通过划格法和模拟大气腐蚀研究复合膜、硅烷膜试样、镧盐钝化膜试样与有机涂层间的结合力。结果表明:在KH-602硅烷基础溶液中添加15 g/L硝酸镧时硅烷镧盐复合膜的耐蚀性和结合力最好;复合膜主要由S,O,Si,Al,La元素组成,其中La元素含量明显高于单一稀土转化膜;与硅烷膜、镧盐转化膜相比,复合膜表现出很好的耐蚀性。  相似文献   

4.
为了增强6061铝合金基体的耐蚀性,以盐雾试验后试样腐蚀面积作为评价指标,采用正交试验优选出以钛盐和H2O2为促进剂的铝合金氟钛酸盐协同硅烷复合膜的最佳制备工艺条件:钛盐5 g/L,氟化钠6 g/L,H2O210 m L/L,pH值为4,常温下浸涂60 min。在该工艺条件下制备出的复合膜具有较好的耐蚀性。通过极化曲线、中性盐雾试验分析比较了硅烷-氟钛酸盐复合膜和单一硅烷膜的耐蚀性能,并通过扫描电镜观察了膜层的表面形貌。结果表明:硅烷-氟钛酸盐复合膜可以降低6061铝合金的腐蚀速率,对铝合金基体有较好的保护作用。  相似文献   

5.
目前,将植酸与锆盐复合转化膜用于钢铁表面防护的研究较少。采用氟锆酸钾和植酸在A3钢表面制备了具有良好耐蚀性能的灰色锆盐-植酸复合转化膜,确定了转化液的组成及成膜工艺条件。采用扫描电镜(SEM)、能谱分析(EDS)、傅里叶变换红外光谱(FTIR)、电化学测试及中性盐雾试验(NSS)对复合膜的形貌、成分、成膜过程电位特性及耐蚀性进行分析。结果表明:锆盐-植酸复合转化最优工艺为10 g/L氟锆酸钾,1.0 m L/L植酸,p H值3.8~4.0,反应温度60℃,反应时间1.5 h;钢铁经最优工艺处理所得复合膜的自腐蚀电位比未加植酸所得锆盐膜的正移了48 m V,自腐蚀电流密度下降约10%,低频区电化学阻抗值提高了近2倍,耐中性盐雾时间增加24.0 h,钢铁的耐腐蚀性能显著提高。  相似文献   

6.
室温下6063铝合金着色钛锆转化膜的制备及性能   总被引:3,自引:0,他引:3  
在6063铝合金表面形成了着色钛锆转化膜.用SEM/EDX分析了转化膜的表面形貌及成分,采用电化学工作站和点滴实验研究了转化膜的耐蚀性能,并对着色钛锆转化膜的成膜机理及耐蚀机理进行了分析.结果表明,添加锰盐和有机酸,可生成蜂窝状的着色转化膜,膜层更致密;转化膜的腐蚀电位更低,且腐蚀电流密度明显降低,说明钛锆钝化液中添加锰盐和有机酸,可以更好地抑制铝合金的阴极反应,从而更有效地提高铝合金的耐蚀性能.  相似文献   

7.
2024铝合金表面有色钛锆转化膜的制备与性能研究   总被引:1,自引:0,他引:1  
为解决铝合金表面高耐蚀、无铬有色钛锆转化膜的制备难题,以2024铝合金为基体,采用钛酸盐、锆酸盐为主盐,单宁酸为着色剂并加入缓蚀剂,制备了一种有色钛锆转化膜.通过扫描电子显微镜(SEM)、能谱(EDS)、X射线光电子能谱(XPS)、中性盐雾试验、动电位极化曲线和电化学阻抗对有色转化膜的表面形貌、成分及耐蚀性能进行了表征和分析.结果表明:制备的钛锆转化膜均匀平整,无明显缺陷;处理后的2024铝合金经168h中性盐雾试验,膜层颜色略有变浅,但无明显腐蚀产物生成,转化膜腐蚀电位升高了270 mV,腐蚀电流密度降低了2个数量级,极化电阻增加了1个数量级;转化膜在腐蚀过程中自钝化作用及腐蚀产物的封闭阻挡作用是膜层具有较好防护性能的主要原因.  相似文献   

8.
为开发出可替代铝合金表面铬酸盐转化工艺,以2024铝合金为基体,采用钛酸盐、锆酸盐为主盐,制备了金黄色与灰色2种无铬钛锆转化膜,并与阿洛丁铬酸盐转化膜进行性能对比。通过扫描电子显微镜(SEM)、能谱(EDS)、盐雾试验、动电位极化曲线和电化学阻抗谱对3种转化膜的表面形貌、成分、耐蚀性能及防护机制进行分析表征。结果表明:2种钛锆转化膜表面平整、无明显缺陷,但呈现出不同的微观形貌特征;经168 h中性盐雾试验,二者均无明显腐蚀产物产生;2种钛锆转化膜极化曲线呈现出较为明显的钝化区,膜层电阻也随浸泡时间的延长逐渐增加,但其模值|Z|要远低于铬酸盐转化膜,灰色钛锆转化膜的防护性能要优于金黄色钛锆转化膜。  相似文献   

9.
环保型铝及铝合金表面化学转化工艺及性能研究   总被引:4,自引:1,他引:3  
开发了一种由无毒的钛盐、锆盐和有机聚合物组成的铝及铝合金化学转化剂CF-5,以取代有毒的六价铬钝化.其配方为:0.10~2.00g/L PO43-,0.05~1.00g/L Ti4 ,0.05~1.50g/L Zr4 ,0.30~1.50g/L F-,0.50~2.00g/L氧化剂,0.05~3.00g/L有机聚合物(水溶性环氧聚合物或丙烯酸聚合物).该钝化剂可在铝及铝合金表面形成性能优良的化学转化膜,膜层有较好的耐蚀性能,且与有机涂层具有良好的附着力.  相似文献   

10.
目前已有的镁合金无铬化学转化工艺都存在一些不足。通过单因素试验优选了由偏钒酸盐、氟锆酸盐组成的转化液及其成膜工艺条件,在AZ31B镁合金表面制备了无铬复合化学转化膜,并采用扫描电镜、能谱分析和电化学测试考察了转化膜的成分、结构及耐蚀性能。结果表明:最优工艺为2.0 g/L偏矾酸铵,2.0 g/L氟锆酸钾,pH值2.5,温度60℃,转化时间15 min;在此条件下获得了由70.54%Mg,1.88%Al,0.77%Zn,10.63%O,10.36%F,4.75%Zr和1.05%V元素组成的无定形结构转化膜;转化处理后腐蚀电位较基体正移了269 mV,腐蚀电流密度由基体的6.20×10-5A/cm2降低至7.28×10-6A/cm2,耐中性盐雾时间达80 h,使镁合金的耐蚀性能显著增强。  相似文献   

11.
在钒锆体系基础上添加单宁酸可提高AZ91D镁合金表面锆酸盐转化膜的耐蚀性能,目前研究较少。采用单因素试验的方法,研究单宁酸浓度对转化膜的影响;通过盐雾试验、电化学测试来检测膜层的耐蚀性能;利用扫描电镜(SEM)以及能谱(EDS)分析转化膜的微观形貌和成分变化。结果表明:单宁酸的浓度在0.3~0.5 g/L之间时,膜层晶粒较为细致,膜层均匀,阻抗值弧明显大于其他浓度时的阻抗弧,腐蚀电流密度达2.256×10-5A/cm~2,耐盐雾时间达600 min;在锆酸盐里添加单宁酸后形成的转化膜可以提高AZ91D镁合金表面的耐蚀性能。  相似文献   

12.
为改善铝及铝合金的表面防腐蚀性能,在γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH-560)基础溶液中添加不同含量的硝酸镧,在6061铝合金表面制备不同硝酸镧浓度掺杂的硅烷-镧盐复合膜;采用极化曲线、硫酸铜点滴、腐蚀失重率试验等方法分析膜层性能,并得出了镧盐最佳用量。对比分析了最佳镧盐用量下复合膜、硅烷膜和稀土转化膜的耐蚀性能。结果表明:在KH-560硅烷膜制备过程中添加一定量硝酸镧可有效提高硅烷膜的耐蚀性,添加15 g/L硝酸镧时,形成的复合膜层致密且没有裂纹,耐蚀性最好;与单一的硅烷、镧盐转化膜相比,复合膜表现出很好的耐蚀性。  相似文献   

13.
采用化学转化处理法在6063铝合金表面制备获得淡黄色的钛/锆/钼转化膜,通过浸泡法并借助电化学工作站考察了钛/锆/钼转化膜的耐蚀性,采用划痕法结合扫描电子显微镜(SEM)研究了钛/锆/钼转化膜的自愈性。转化液的组成为:2 g/L H_2TiF_6,2 g/L H_2ZrF_6,2 g/L有机酸着色剂,3 g/L Na_2MoO_4。结果表明,在pH=3.0、温度为35℃、时间为5 min的工艺条件下能够在6063铝合金表面获得淡黄色、致密且耐蚀性良好的膜层,膜层微观表面均匀分布着白色颗粒和裂纹。人工划痕的钛/锆/钼转化膜在3.5%NaCl盐雾氛围中随着浸泡时间的延长划痕逐渐愈合,形成新的膜层,这表明制得的膜层具有自愈性。当在中性盐雾中的腐蚀时间超过5 d后,划痕处附近膜层中的氧化剂不断被消耗,迁移至划痕处发生络合的物质逐渐减少,膜层自愈性能退化,膜层被腐蚀。  相似文献   

14.
王娜娜  郭瑞光  唐长斌  张力  房新建 《材料保护》2012,45(5):38-41,86,87
为了寻找替代传统铬酸盐转化的处理工艺,采用由NaF,(NH4)2SiF6,(NaPO3)6和钛盐促进剂组成的转化液,在2024铝合金表面制备了一种氟铝酸盐化学转化膜,优化了转化液组分及转化工艺条件。结果表明:最优工艺为5.0 g/L NaF,5.0 g/L(NH4)2SiF6,0.9 g/L(NaPO3)6,0.5 g/L钛盐促进剂,pH值为4.7,室温,20 min;最优工艺所得氟铝酸盐转化膜由排列紧密且形状规则的晶体颗粒组成,表面覆盖有胶状物,膜层连续而致密、呈亚光,组成(质量分数)为7.53%O,48.87%F,19.11%Na,20.78%Al,0.79%Si,1.66%P,1.26%Cu;氟铝酸盐转化膜耐蚀性优良,最优工艺所得转化膜耐盐雾腐蚀达285 h,其使铝合金在3.5%NaCl溶液中的腐蚀电位增加了58 mV,腐蚀电流密度降为钝化前的1/9。  相似文献   

15.
6063铝合金无铬有色化学转化工艺探讨   总被引:1,自引:0,他引:1  
为了进一步提高6063铝合金表面无铬转化膜的性能以替代铬酸盐钝化膜,以钛盐为成膜主剂,钨酸盐为上色剂,多羟基有机酸钠为配位剂,在6063铝材表面进行无铬有色化学转化,采用铬酸盐点滴试验、电化学方法、中性盐雾试验及划格法对转化膜的耐蚀性、附着力进行了测试,并对转化液配方及成膜条件进行了优选,探讨了添加剂及工艺参数对膜层质量的影响。结果表明:较优转化液配方及成膜条件为2.0 g/L钛盐、0.3~0.5 g/L钨酸盐上色剂,0.5~0.7 g/L多羟基有机酸钠配位剂,25~30℃,pH值为3.2~3.6,转化时间为5~7 min;优化工艺可在6063铝合金表面获得均一的金黄色无铬转化膜,自腐蚀电流密度仅为基材的1/6;转化膜与聚酯漆膜的附着力与六价铬转化膜的相当;该工艺完全无铬、无毒。  相似文献   

16.
陈启波  赵永武  卞达 《材料保护》2023,(4):104-109+148
为提高40Cr钢体表面耐腐蚀性能,采用双-[γ-(三乙氧基硅)丙基]-四硫化物(BTESPT)、硝酸锆和植酸在40Cr钢表面制备了具有优异耐蚀性能的硅烷锆盐复合转化膜,采用正交实验法优选了硅烷锆盐复合转化液成膜的工艺条件。采用硫酸铜滴定实验、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)及电化学测试对复合膜的耐蚀性、形貌、成分、膜层的电位特性进行分析。结果表明:硅烷锆盐复合膜最优工艺为硅烷浓度5%(体积分数),硝酸锆浓度为0.75%(质量分数),溶液pH值为4,反应温度25℃,反应时间50 s;通过硫酸铜点滴试验和电化学测试可以看出掺杂植酸的复合转化膜的耐蚀性比单一硅烷膜和硅烷锆盐膜得到了明显的提升;通过微观形貌观察可以看出,植酸的添加弥补了膜层缺陷,阻碍了腐蚀介质的扩散,增强了膜层的耐腐蚀性。  相似文献   

17.
热镀锌钢铈盐/硅烷复合膜的制备及其耐蚀性能   总被引:1,自引:0,他引:1  
热镀锌钢板上单一的铈盐、硅烷钝化膜有一些缺点,对提高其耐蚀性作用不大。为此,将热镀锌钢板先经铈盐溶液处理,再用乙烯基三甲氧基硅烷溶液浸渍,获得了铈盐/硅烷复合钝化膜。采用扫描电镜(SEM)、俄歇电子能谱(AES)、盐水全浸试验和电化学交流阻抗谱(EIS)研究了复合膜层的表面形貌、结构特性和耐蚀性能。结果表明:硅烷膜能较好地填充铈盐转化膜中的裂纹,铈盐/硅烷复合膜层连续、完整、致密,厚400~450 nm,与基体结合较好,复合膜中硅烷膜/铈盐转化膜/锌基体的化学成分呈连续的梯度变化;与热镀锌钢相比,单一铈盐转化膜、硅烷膜的交流阻抗值增加了1个多数量级,复合膜的则增加了约2个数量级,复合膜层的耐蚀性较单一膜层显著增强,且优于常规铬酸盐钝化膜。  相似文献   

18.
为了进一步提高铝合金的耐腐蚀性能,利用两步法在6063铝合金表面制备Ce-Mn/Mo复合化学转化膜。采用扫描电镜、能谱仪、电化学测试对转化膜的组织结构和耐蚀性能进行表征。结果表明:Ce-Mn/Mo复合膜主要由Al,Mo,Ce,Mn的氧化物和氢氧化物组成,主要成膜元素Mo,Ce和Mn在膜层中分布规律基本一致;膜层组织致密且较厚,与基体间结合良好;Ce-Mn/Mo复合转化膜具有优异的电化学腐蚀性能,可显著降低6063铝合金的自腐蚀电流密度,使钝化区间变宽。  相似文献   

19.
镁合金经化学转化处理后能显著提高其耐蚀性和涂装性,为了解转化时间对转化膜成膜及其性能的影响,以NaVO3和K2Zr F6作为转化处理液的主盐,在AZ31镁合金表面制备了新型环保的钒锆化学转化膜,系统研究了转化工艺参数中的转化时间对转化膜成膜和性能的影响。通过膜层测厚、耐点滴试验以及结合力试验对不同转化时间下的钒-锆转化膜进行了性能分析,运用金相显微镜、扫描电子显微镜和能谱分析了转化膜的形貌和成分,采用电化学工作站测试了极化曲线,进一步研究了转化膜的电化学性能。结果表明:转化时间为25 min时,膜层表面均匀平整,转化膜的耐腐蚀能力以及与基体的结合能力最佳。膜层的主要防护成分由V、Zr、Mg、O、F、C元素组成。  相似文献   

20.
铝合金表面锆盐转化膜的制备及其性能   总被引:2,自引:0,他引:2  
为提高铝合金涂膜的结合力及耐蚀性,在铝合金表面制备了锆盐转化膜.通过盐雾试验、电化学试验、膜微观结构与涂膜结合力测试,研究了锆盐转化膜的耐蚀性与漆膜的结合力,并与通用的铬酸盐转化膜和无铬转化膜进行对比.结果表明:锆盐转化膜120 h盐雾试验的耐蚀等级达8级,在3.5%NaCl溶液中铝合金的自腐蚀电位明显正移,腐蚀电流密度大大降低;转化膜层均匀多孔,含有Al,O,Zr和Mg元素,且与漆膜结合力良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号