首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The hot deformation behavior and microstructures of Al-7055 commercial alloy were investigated by axisymmetric hot compression at temperatures ranging from 300°C to 450°C and strain rates from 10-2 to 10 s-1,respectively.Microstructures of deformed 7055 alloy were investigated by transmission electron microscopy (TEM).The dependence of peak stress on deformation temperature and strain rate can be expressed by the hyperbolic-sine type equation.The hot deformation activation energy of the alloy is 146 kJ/mol....  相似文献   

2.
利用Gleeble-3500热力模拟试验机在950-1200℃,应变速率为0.1-10s-1条件下进行了含稀土的23Cr型双相不锈钢的热压缩变形,获得了流变曲线,建立了热变形方程,分析了变形组织。结果表明:在流变曲线上既存在峰值应力也有稳态应力;在高温低应变速率条件下,峰值应变减小。上述变形条件下,试验钢的热变形激活能Q=436kJ/mol,表观应力指数n=3.91,热变形方程为:ε=2.41×1016[sinh(0.012σs)]3.91exp (-436000/RT)。奥氏体的动态再结晶在试验钢的动态软化机制中起主导作用且随着温度的升高和应变速率的降低越来越充分;而大应变下,铁素体的软化主要表现为较充分的动态回复。稀土元素影响了热变形时两相中Mo元素的再分配是稀土改善双相不锈钢高温塑性的重要原因之一。稀土使Mo在铁素体中浓度较低温度下降低,高温下升高;而奥氏体相中,使得Mo浓度在较低温度下升高而高温下降低。  相似文献   

3.
It was investigated that the superplastic mechanical properties of fine-grained ZK60 magnesium alloy sheets at the temperature range of 200-420 ℃ and strain rate range of 5.56 × 10-4 -5.56 ×10-2 s-1 by tensile tests.And the microstructure evolution during the superplastic deformation of ZK60 magnesium alloy was examined by metallurgical microscope and transmission electronic microscope (TEM).The results showed that fine-grained ZK60 magnesium alloy starts to exhibit superplasticity from 250 ℃ and the maximum elongation is about 1106% at 400 ℃ and 5.56 × 10-4 s-1.The strain rate sensitivity is significantly enhanced with the increase of temperature and with the decrease of strain rate.The predominate superplastic mechanism of ZK60 magnesium alloy is grain boundary slide (GBS) at the temperature range of 300-400 ℃.The grains of ZK60 alloy remain equaxial after superplastic deformation,and dynamic continuous recrystallization (DCRX) is an important softening mechanism and grain stability mechanism during the superplastic deformation of the alloy.The curved grain boundaries and crumpled bands at grain boundaries after deformation prove GBS generates during superplastic deformation of ZK60 magnesium alloy.  相似文献   

4.
The superplastic behavior of a commercial duplex stainless steel has been studied by means of isothermal hot tensile testat temperatures of 850-1050℃ for the initial strain rates ranging from 3×l0-4 s-1 to 5X10-2 s-1. At 960℃, the best superplastic de-formation that caused the maximum elongation greater than 840% was obtained for an initial strain rate of 1.2×10-3 s-1. At 850℃, thebest elongation 500% was achieved for an initial strain rate of 2.5×10-3 s-1. During the deformation in higher temperature region,coarse γ grains formed during the prior treatments were broken into spherical particles, resulting in a homogeneous dispersion of γparticles within the δ-ferrite matrix. However, at lower temperatures between 800 and 950℃, the σ phase was formed through theeutectoid decomposition of δ→γ+σ, resulting finally in the stable equiaxed micro-duplex structures with δ/γ and γ/σ, respectively.The precipitation of the σ phase played an important role in improving the superplasticity at 850℃. The strain-rate sensitivity coeffi-cient, m-values, were also determined by the strain rate change tests. The microstructure studies show that the superplastic processoccurs mainly by the local work hardening and the subsequent dynamic recrystallization and a grain boundary sliding and grain switching mechanism.  相似文献   

5.
Hot deformation behavior of Super304H austenitic heat resistant steel   总被引:1,自引:0,他引:1  
The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s~(-1) using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The results show that the flow stress of Super304H steel decreases with the decrease of strain rate and the increase of deformation temperature;the hot deformation activation energy of the steel is 485 kJ/mol.The hot deformation equation and the relationship between the peak stress and the deforma...  相似文献   

6.
The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653-773 K and in the strain rate range of 0.001-10 s^-1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature,and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate,and in an Arrhenius relationship with the temperature,which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n,α and A in the analytical expressions of flow stress σ are fitted to be 5.62,0.019 MPa^-1 and 1.51×10^16 s^-1,respectively. The hot deformation activation energy is 240.85 kJ/mol.  相似文献   

7.
研究了Al-1Mn-1Mg合金不同变形下的流变应力曲线和微观结构特征,探讨了该铝材在热变形过程中的动态软化行为。结果表明,应变速率为0.1 s-1时,若变形温度较低,则发生了动态回复;若变形温度高于723 K,产生明显的动态再结晶;变形温度为673 K时,在低应变速率条件下,产生动态再结晶,应变速率高于0.1 s-1,软化过程具有动态回复和动态再结晶的混合特征。当应变速率高于5.0 s-1时,产生几何动态再结晶。  相似文献   

8.
The hot deformation behaviors of GCr15 bearing steel were investigated by isothermal compression tests, performed on a Gleeble-3800 thermal-mechanical simulator at temperatures between 950℃ and 1150℃ and strain rates between 0.1 and 10 s^-1. The peak stress and peak strain as functions of processing parameters were obtained. The dependence of peak stress on strain rate and temperature obeys a hyperbolic sine equation with a Zener-Hollomon parameter. By regression analysis, in the temperature range of 950-1 150℃ and strain rate range of 0.1-10 s^-1, the mean activation energy and the stress exponent were determined to be 351kJ/mol and 4.728, respectively. Meanwhile, models of flow stress and dynamic recrystallization (DRX) grain size were also established. The model predictions show good agreement with experimental results.  相似文献   

9.
The hot deformation simulation of a ZK60 magnesiuln alloy at different temperatures from 373 to 673 K and different strain rates of 0.1, 0.01 and 0.002 s^-1 was studied by using the Gleebe-1500 simulator. The plastic deformation behavior was measured and the deformation activation energy was calculated. The microstructures of ZK60 magnesium alloy with an addition of neodymium during the deformation process were observed by using Polyvar-MET optical microscope and Tecnai G^2 20 TEM. The results show that the working hardening, the dynamic recovery and the dynamic recrystallization occur during the plastic deformation process at different temperatures and strain rates. The dynamic recrystallization starts when the temperature is over 473 K and the DRX grain size after hot deformation is only 5-10 μm. So the refined grains improve both the tensile strength and the elongation of alloys at room temperature. Neodymium is added into the alloy and a precipitate phase Mg12Nd that impedes the movement of dislocations is formed, which benefits to increasing mechanical properties of ZK60 magnesium alloy.  相似文献   

10.
为了给制定和优化热加工工艺参数提供理论依据,采用Gleeble-1500热模拟机研究了含锆Al-Mg-Si合金在变形温度为653~803 K、变形速率为0.01~10s-1条件下的热压缩变形的流变应力行为,并通过回归法建立材料变形的流变应力数学模型.结果表明:该合金为正应变速率敏感材料,真应力-真应变曲线存在明显的稳态流变特征;流变应力随着变形速率的增加以及变形温度的降低而增加;在较低变形温度条件下,真应力〖CDF*3〗真应变曲线为动态回复曲线;在较高变形温度条件下真应力-真应变曲线为动态再结晶曲线.该合金流变应力σ可用包含Arrhenius项的Zener Hollomon参数的函数来描述,式中A、α和n的值分别为1.89×1010s-1、0.024MPa-1和7.46,热变形激活能Q为166.85kJ/mol.  相似文献   

11.
A Thermecmastor-Z hot deformation simulator,optical microscopy,XRD and TEM were employed to characterize the flow stress behavior and microstructure of twin roll cast ZK60 magnesium alloy during initial stage of hot compression at elevated temperature of 300 ℃ and 400 ℃ and a given strain rate of 10-2s-1.The results suggest that flow stress drop during initial stage of hot compression at 300℃,generally led by dynamic recrystallization,is attributed to twinning,correspondingly to dynamic recrystallization as...  相似文献   

12.
为了解决Mg-9Gd-3Y合金在热塑性变形过程中的本构关系问题,对Mg-9Gd-3Y合金进行了不同变形温度(653~753K)下采用不同应变速率(0.01~10s-1)的热压缩试验,利用载荷/位移数据建立真应力/真应变曲线和本构方程.结果表明:动态再结晶在晶界处较易发生,流变曲线显示出典型的动态再结晶特征,以及应力水平与变形温度和应变速率的关系.本构方程预测出的流变应力数据与相应的试验结果较一致.  相似文献   

13.
AZ31镁合金热变形规律的研究   总被引:1,自引:2,他引:1  
利用等温压缩试验方法,研究了AZ31镁合金在应变速率为0.001~1 s-1,变形温度为473K~623K的条件下的变形行为.动态再结晶是该试验条件下晶粒细化的主要机制,通过分析显微组织的变化来研究动态再结晶的机制,同时研究孪晶对再结晶机制的影响.  相似文献   

14.
通过Gleeble-3500热模拟实验机获得了TC6钛合金在变形温度为800~980℃,应变速率为0.5~5s-1,变形程度为30%和60%时的应力-应变曲线。利用高温变形机理分析了热变形参数对流动应力的影响规律,建立了可用于锻造过程数值模拟的TC6合金高温变形的本构方程。  相似文献   

15.
Dynamic recrystallization during hot torsion of Al-4Mg alloy   总被引:3,自引:0,他引:3  
Binary Al-4Mg alloy have been deformed by hot torsion at 300-500℃ and strain rates of 0.006-1.587 s of 5.5. The specimens were annealed in vacuum for 1.5 h at 500℃ and then water quenched. The study indicates that the dynamic recrystallization occurs during hot torsion of Al-4Mg alloy in a certain range of Z parameter (Zener-Hollmon Parameter), i.e. 19.3 ≤ InZ ≤ 24.8. Increasing the strain rate at higher deformation temperature or reducing the strain rate at lower deformation temperature accelerates the occurrence of dynamic recrystallization in the alloy.  相似文献   

16.
Hot deformation behavior and flow stress model of F40MnV steel   总被引:1,自引:0,他引:1  
Single hit compression tests were performed at 1 223-1 473 K and strain rate of 0.1-10 s-1 to study hot deformation behavior and flow stress model of F40MnV steel. The dependence of the peak stress, initial stress, saturation stress, steady state stress and peak stain on Zener-Hollomon parameter were obtained. The mathematical models of dynamic recrystallization fraction and grain size were also obtained. Based on the tested data, the flow stress model of F40MnV steel was established in dynamic recovery region and dynamic recrystallization region, respectively. The results show that the activation energy for dynamic recrystallization is 278.6 kJ/mol by regression analysis. The flow stress model of F40MnV steel is proved to approximate the tested data and suitable for numerical simulation of hot forging.  相似文献   

17.
采用单道次热压缩实验方法,在Thermomaster-Z型热模拟试验机上模拟高碳钢高速线材热轧变形过程动态再结晶行为,测定82B高碳钢在变形温度为800~1 100℃、变形速率为0.1~50 s-1、变形程度为0~0.60条件下的真应力-应变曲线,利用曲线特征值确定高应变速率下的变形激活能,根据实验结果分析动态再结晶变形条件,建立动态再结晶状态图。  相似文献   

18.
利用Gleeble-1500热模拟实验机研究37Mn5钢在变形温度为800~1150℃、变形速率为0.1~10s^-1条件下的热压缩变形行为。采用应变硬化率-应力曲线图较精确地获得峰值应力,并用双曲正弦方程描述37Mn5钢热压缩变形过程中的峰值应力与Zener—Hollomon参数的关系。回归分析得到方程中变形激活能及各材料常数的值,获得37Mn5钢在高温条件下的流变应力本构方程。结果表明,采用该本构方程计算出的流变应力值与实验所得应力值非常接近。  相似文献   

19.
The effect of processing parameters on the flow response and microstructural evolution of the α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si has been studied by conducting isothermal hot compressive tests at a strain rate of 0.01-10 s-1 at 860-1100℃.The true stress-true strain curves of the sample hot-compressed in the α+β phase region exhibit a peak stress followed by continuous flow softening,whereas in the β region,the flow stress attains a steady-state regime.At a strain rate of 10 S-1,the alloy exhibits plastic flow instabilities.According to the kinetic rate equation,the apparent activation energies are estimated to be about 674-705 KJ/mol in the α+β region and 308-335 kJ/mol in the β region,respectively.When deformed in the α+β region,the globularization process of the α colony structure occurs,and α dynamic recrystallized microstructures are observed to show bimodal.Dynamic recrystallization can take place in the β region irrespective of starting deformed structures.  相似文献   

20.
采用热压缩试验研究了316LN不锈钢在温度1250℃-900℃,应变速率0.005s^-1~0.5s^-1,变形程度50%条件下的变形行为和组织演变;分析了变形参数对应力-应变曲线的影响规律,计算获得了该钢热变形应力指数和激活能;并通过动态再结晶晶粒演变规律的研究,建立了该钢热变形动态再结晶图,以及动态再结晶晶粒演变规律模型。研究结果可为316LN不锈钢锻造过程晶粒细匀化的控制提供科学的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号