首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
The presence of measurement errors affecting the covariates in regression models is a relevant topic in many scientific areas, as, for example, in epidemiology. An example is given by an epidemiological population-based matched case-control study on the aetiology of childhood malignancies, which is currently under completion in Italy. This study was aimed at evaluating the effects of childhood exposure to extremely low electromagnetic fields on the risk of disease occurrence by taking into account the possibility of erroneous measures of the exposure. Within this framework, we focus on the application of likelihood methods to correct for measurement error. This approach, which has received less attention in literature with respect to alternatives, is compared with commonly used methods such as regression calibration and SIMEX. The comparison is performed by simulation, under a broad range of measurement error structures.  相似文献   

2.
    
We employ a general bias preventive approach developed by Firth (Biometrika 1993; 80:27-38) to reduce the bias of an estimator of the log-odds ratio parameter in a matched case-control study by solving a modified score equation. We also propose a method to calculate the standard error of the resultant estimator. A closed-form expression for the estimator of the log-odds ratio parameter is derived in the case of a dichotomous exposure variable. Finite sample properties of the estimator are investigated via a simulation study. Finally, we apply the method to analyze a matched case-control data from a low birthweight study.  相似文献   

3.
This paper is concerned with the problem of estimating the demand for health care with panel data. A random effects model is specified within a semiparametric Bayesian approach using a Dirichlet process prior. This results in a very flexible distribution for both the random effects and the count variable. In particular, the model can be seen as a mixture distribution with a random number of components, and is therefore a natural extension of prevailing latent class models. A full Bayesian analysis using Markov chain Monte Carlo simulation methods is proposed. The methodology is illustrated with an application using data from Germany.  相似文献   

4.
    
When modeling the risk of a disease, the very act of selecting the factors to be included can heavily impact the results. This study compares the performance of several variable selection techniques applied to logistic regression. We performed realistic simulation studies to compare five methods of variable selection: (1) a confidence interval (CI) approach for significant coefficients, (2) backward selection, (3) forward selection, (4) stepwise selection, and (5) Bayesian stochastic search variable selection (SSVS) using both informed and uniformed priors. We defined our simulated diseases mimicking odds ratios for cancer risk found in the literature for environmental factors, such as smoking; dietary risk factors, such as fiber; genetic risk factors, such as XPD; and interactions. We modeled the distribution of our covariates, including correlation, after the reported empirical distributions of these risk factors. We also used a null data set to calibrate the priors of the Bayesian method and evaluate its sensitivity. Of the standard methods (95 per cent CI, backward, forward, and stepwise selection) the CI approach resulted in the highest average per cent of correct associations and the lowest average per cent of incorrect associations. SSVS with an informed prior had a higher average per cent of correct associations and a lower average per cent of incorrect associations than the CI approach. This study shows that the Bayesian methods offer a way to use prior information to both increase power and decrease false-positive results when selecting factors to model complex disease risk.  相似文献   

5.
    
In an individually matched case-control study, effects of potential risk factors are ascertained through conditional logistic regression (CLR). Extension of CLR to situations with multiple disease or reference categories has been made through polychotomous CLR and is shown to be more efficient than carrying out separate CLRs for each subgroup. In this paper, we consider matched case-control studies where there is one control group, but there are multiple disease states with a natural ordering among themselves. This scenario can be observed when the cases can be further classified in terms of the seriousness or progression of the disease, for example, according to different stages of cancer. We explore several popular models for ordered categorical data in this context. We first adopt a cumulative logit or equivalently, a proportional-odds model to account for the ordinal nature of the data. The important distinction of this model from a stratified dichotomous and polychotomous logistic regression model is that the stratum-specific nuisance parameters cannot be eliminated in this model via the conditional-likelihood approach. We discuss a Mantel-Haenszel approach for analysing such data. We point out possible difficulties with standard likelihood-based approaches with the cumulative logit model when applied to case-control data. We then consider an alternative conditional adjacent-category logit model. We illustrate the methods by analysing data from a matched case-control study on low birthweight in newborns where infants are classified according to low and very low birthweight and a child with normal birthweight serves as a control. A simulation study compares the different ordinal methods with methods ignoring sub-classification of the ordered disease states.  相似文献   

6.
Rice K 《Statistics in medicine》2003,22(20):3177-3194
We consider analysis of matched case-control studies where a binary exposure is potentially misclassified, and there may be a variety of matching ratios. The parameter of interest is the ratio of odds of case exposure to control exposure. By extending the conditional model for perfectly classified data via a random effects or Bayesian formulation, we obtain estimates and confidence intervals for the misclassified case which reduce back to standard analytic forms as the error probabilities reduce to zero. Several examples are given, highlighting different analytic phenomena. In a simulation study, using mixed matching ratios, the coverage of the intervals are found to be good, although point estimates are slightly biased on the log scale. Extensions of the basic model are given allowing for uncertainty in the knowledge of misclassification rates, and the inclusion of prior information about the parameter of interest.  相似文献   

7.
    
A new goodness-of-fit test for the logistic regression model is proposed. It exploits the property of this model that when it is correct, i.e. not misspecified, the parameter estimates are (asymptotically) invariant under reweighting the observations by weights wi that are a function of the binary (0/1) outcomes yi. Misspecification of the model can thus be concluded when parameter estimates change under reweighting. A local test, considering weights of the form wi=(1 + epsilonyi) is explored. The test is especially suitable for case-control studies but may be used in other contexts as well.  相似文献   

8.
    
In epidemiology, one approach to investigating the dependence of disease risk on an explanatory variable in the presence of several confounding variables is by fitting a binary regression using a conditional likelihood, thus eliminating the nuisance parameters. When the explanatory variable is measured with error, the estimated regression coefficient is biased usually towards zero. Motivated by the need to correct for this bias in analyses that combine data from a number of case-control studies of lung cancer risk associated with exposure to residential radon, two approaches are investigated. Both employ the conditional distribution of the true explanatory variable given the measured one. The method of regression calibration uses the expected value of the true given measured variable as the covariate. The second approach integrates the conditional likelihood numerically by sampling from the distribution of the true given measured explanatory variable. The two approaches give very similar point estimates and confidence intervals not only for the motivating example but also for an artificial data set with known properties. These results and some further simulations that demonstrate correct coverage for the confidence intervals suggest that for studies of residential radon and lung cancer the regression calibration approach will perform very well, so that nothing more sophisticated is needed to correct for measurement error.  相似文献   

9.
    
The conditional logistic regression model (Biometrics 1982; 38:661-672) provides a convenient method for the assessment of qualitative or quantitative covariate effects on risk in a study with matched sets, each containing a possibly different number of cases and controls. The conditional logistic likelihood is identical to the stratified Cox proportional hazards model likelihood, with an adjustment for ties (J. R. Stat. Soc. B 1972; 34:187-220). This likelihood also applies to a nested case-control study with multiply matched cases and controls, selected from those at risk at selected event times. Herein the distribution of the score test for the effect of a covariate in the model is used to derive simple equations to describe the power of the test to detect a coefficient theta (log odds ratio or log hazard ratio) or the number of cases (or matched sets) and controls required to provide a desired level of power. Additional expressions are derived for a quantitative covariate as a function of the difference in the assumed mean covariate values among cases and controls and for a qualitative covariate in terms of the difference in the probabilities of exposure for cases and controls. Examples are presented for a nested case-control study and a multiply matched case-control study.  相似文献   

10.
    
Family studies to identify disease-related genes frequently collect only families with multiple cases. It is often desirable to determine if risk factors that are known to influence disease risk in the general population also play a role in the study families. If so, these factors should be incorporated into the genetic analysis to control for confounding. Pfeiffer et al. [2001 Biometrika 88: 933-948] proposed a variance components or random effects model to account for common familial effects and for different genetic correlations among family members. After adjusting for ascertainment, they found maximum likelihood estimates of the measured exposure effects. Although it is appealing that this model accounts for genetic correlations as well as for the ascertainment of families, in order to perform an analysis one needs to specify the distribution of random genetic effects. The current work investigates the robustness of the proposed model with respect to various misspecifications of genetic random effects in simulations. When the true underlying genetic mechanism is polygenic with a small dominant component, or Mendelian with low allele frequency and penetrance, the effects of misspecification on the estimation of fixed effects in the model are negligible. The model is applied to data from a family study on nasopharyngeal carcinoma in Taiwan.  相似文献   

11.
    
Epidemiologic research often aims to estimate the association between a binary exposure and a binary outcome, while adjusting for a set of covariates (eg, confounders). When data are clustered, as in, for instance, matched case-control studies and co-twin-control studies, it is common to use conditional logistic regression. In this model, all cluster-constant covariates are absorbed into a cluster-specific intercept, whereas cluster-varying covariates are adjusted for by explicitly adding these as explanatory variables to the model. In this paper, we propose a doubly robust estimator of the exposure-outcome odds ratio in conditional logistic regression models. This estimator protects against bias in the odds ratio estimator due to misspecification of the part of the model that contains the cluster-varying covariates. The doubly robust estimator uses two conditional logistic regression models for the odds ratio, one prospective and one retrospective, and is consistent for the exposure-outcome odds ratio if at least one of these models is correctly specified, not necessarily both. We demonstrate the properties of the proposed method by simulations and by re-analyzing a publicly available dataset from a matched case-control study on induced abortion and infertility.  相似文献   

12.
We demonstrate the use of dynamic longitudinal models to investigate error management in cardiac surgery. Case study data were collected from a multicentre study of the neonatal arterial switch operation (ASO). Information on two types of negative events, or 'errors', observed during surgery, major and minor events, was extracted from case studies. Each event was judged to be recovered from (compensated) or not (uncompensated). The aim of the study was to model compensation given the occurrence of past events within a case. Two models were developed, one for the probability of compensating for a major event and a second model for the probability of compensating for a minor event. Analyses based on dynamic logistic regression models suggest that the total number of preceding minor events, irrespective of compensation status, is negatively related with the ability to compensate for major events. The alternative use of random effects models is investigated for comparison purposes.  相似文献   

13.
    
This paper describes a new approach to the estimation in a logistic regression model with two crossed random effects where special interest is in estimating the variance of one of the effects while not making distributional assumptions about the other effect. A composite likelihood is studied. For each term in the composite likelihood, a conditional likelihood is used that eliminates the influence of the random effects, which results in a composite conditional likelihood consisting of only one‐dimensional integrals that may be solved numerically. Good properties of the resulting estimator are described in a small simulation study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
    
Family-based case-control studies are popularly used to study the effect of genes and gene-environment interactions in the etiology of rare complex diseases. We consider methods for the analysis of such studies under the assumption that genetic susceptibility (G) and environmental exposures (E) are independently distributed of each other within families in the source population. Conditional logistic regression, the traditional method of analysis of the data, fails to exploit the independence assumption and hence can be inefficient. Alternatively, one can estimate the multiplicative interaction between G and E more efficiently using cases only, but the required population-based G-E independence assumption is very stringent. In this article, we propose a novel conditional likelihood framework for exploiting the within-family G-E independence assumption. This approach leads to a simple and yet highly efficient method of estimating interaction and various other risk parameters of scientific interest. Moreover, we show that the same paradigm also leads to a number of alternative and even more efficient methods for analysis of family-based case-control studies when parental genotype information is available on the case-control study participants. Based on these methods, we evaluate different family-based study designs by examining their relative efficiencies to each other and their efficiencies compared to a population-based case-control design of unrelated subjects. These comparisons reveal important design implications. Extensions of the methodologies for dealing with complex family studies are also discussed.  相似文献   

15.
    
In matched case‐crossover studies, it is generally accepted that the covariates on which a case and associated controls are matched cannot exert a confounding effect on independent predictors included in the conditional logistic regression model. This is because any stratum effect is removed by the conditioning on the fixed number of sets of the case and controls in the stratum. Hence, the conditional logistic regression model is not able to detect any effects associated with the matching covariates by stratum. However, some matching covariates such as time often play an important role as an effect modification leading to incorrect statistical estimation and prediction. Therefore, we propose three approaches to evaluate effect modification by time. The first is a parametric approach, the second is a semiparametric penalized approach, and the third is a semiparametric Bayesian approach. Our parametric approach is a two‐stage method, which uses conditional logistic regression in the first stage and then estimates polynomial regression in the second stage. Our semiparametric penalized and Bayesian approaches are one‐stage approaches developed by using regression splines. Our semiparametric one stage approach allows us to not only detect the parametric relationship between the predictor and binary outcomes, but also evaluate nonparametric relationships between the predictor and time. We demonstrate the advantage of our semiparametric one‐stage approaches using both a simulation study and an epidemiological example of a 1‐4 bi‐directional case‐crossover study of childhood aseptic meningitis with drinking water turbidity. We also provide statistical inference for the semiparametric Bayesian approach using Bayes Factors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
    
Suppose a nested case-control design has been applied for collecting covariate data when studying a specific disease. With possible new outcomes of interest it would be sensible to utilize the previously selected control group instead of (or in addition to) a new control selection, given that the same covariate data were relevant and available, and that their measurements had adequate stability and quality. We formulate this problem in the framework of the competing risks survival model. In this approach covariate information collected for all outcomes can be utilized in the analysis. We not only propose likelihood-based parameter estimation but we also review alternative methods based on weighted partial/pseudolikelihoods. The methods discussed here are closely related to the analysis of a case-cohort design, where the control group is not tied to cases of a specific disease. The different methods are compared in a simulation study.  相似文献   

17.
    
Motivated by an investigation of the effect of surface water temperature on the presence of Vibrio cholerae in water samples collected from different fixed surface water monitoring sites in Haiti in different months, we investigated methods to adjust for unmeasured confounding due to either of the two crossed factors site and month. In the process, we extended previous methods that adjust for unmeasured confounding due to one nesting factor (such as site, which nests the water samples from different months) to the case of two crossed factors. First, we developed a conditional pseudolikelihood estimator that eliminates fixed effects for the levels of each of the crossed factors from the estimating equation. Using the theory of U‐Statistics for independent but non‐identically distributed vectors, we show that our estimator is consistent and asymptotically normal, but that its variance depends on the nuisance parameters and thus cannot be easily estimated. Consequently, we apply our estimator in conjunction with a permutation test, and we investigate use of the pigeonhole bootstrap and the jackknife for constructing confidence intervals. We also incorporate our estimator into a diagnostic test for a logistic mixed model with crossed random effects and no unmeasured confounding. For comparison, we investigate between‐within models extended to two crossed factors. These generalized linear mixed models include covariate means for each level of each factor in order to adjust for the unmeasured confounding. We conduct simulation studies, and we apply the methods to the Haitian data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
    
It is not uncommon for a continuous outcome variable Y to be dichotomized and analysed using logistic regression. Moser and Coombs (Statist. Med. 2004; 23:1843-1860) provide a method for converting the output from a standard linear regression analysis using the original continuous outcome Y to give much more efficient inferences about the same odds-ratio parameters being estimated by the logistic regression. However, these results apply only to prospective studies. This paper follows up Moser and Coombs by providing an efficient linear-model-based solution for data collected using case-control studies. Gains in statistical efficiency of up to 240 per cent are obtained even with small to moderate odds ratios. Differences in design efficiency between case-control and prospective sampling designs are found to be much smaller, however, when linear-model-based analyses are being used than they are when logistic regression analyses are being used.  相似文献   

19.
    
We present a random effects logistic approach for estimating the efficacy of treatment for compliers in a randomized trial with treatment non-adherence and longitudinal binary outcomes. We use our approach to analyse a primary care depression intervention trial. The use of a random effects model to estimate efficacy supplements intent-to-treat longitudinal analyses based on random effects logistic models that are commonly used in primary care depression research. Our estimation approach is an extension of Nagelkerke et al.'s instrumental variables approximation for cross-sectional binary outcomes. Our approach is easily implementable with standard random effects logistic regression software. We show through a simulation study that our approach provides reasonably accurate inferences for the setting of the depression trial under model assumptions. We also evaluate the sensitivity of our approach to model assumptions for the depression trial.  相似文献   

20.
    
We propose a method to analyze family‐based samples together with unrelated cases and controls. The method builds on the idea of matched case–control analysis using conditional logistic regression (CLR). For each trio within the family, a case (the proband) and matched pseudo‐controls are constructed, based upon the transmitted and untransmitted alleles. Unrelated controls, matched by genetic ancestry, supplement the sample of pseudo‐controls; likewise unrelated cases are also paired with genetically matched controls. Within each matched stratum, the case genotype is contrasted with control/pseudo‐control genotypes via CLR, using a method we call matched‐CLR (mCLR). Eigenanalysis of numerous SNP genotypes provides a tool for mapping genetic ancestry. The result of such an analysis can be thought of as a multidimensional map, or eigenmap, in which the relative genetic similarities and differences amongst individuals is encoded in the map. Once constructed, new individuals can be projected onto the ancestry map based on their genotypes. Successful differentiation of individuals of distinct ancestry depends on having a diverse, yet representative sample from which to construct the ancestry map. Once samples are well‐matched, mCLR yields comparable power to competing methods while ensuring excellent control over Type I error. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号