首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we consider stochastic single machine scheduling problem. We assume that setup times are both sequence dependent and uncertain while processing times and due dates are deterministic. In the literature, most of the studies consider the uncertainty on processing times or due dates. However, in the real-world applications (i.e. plastic moulding industry, appliance assembly, etc.), it is common to see varying setup times due to labour or setup tools availability. In order to cover this fact in machine scheduling, we set our objective as to minimise the total expected tardiness under uncertain sequence-dependent setup times. For the solution of this NP-hard problem, several heuristics and some dynamic programming algorithms have been developed. However, none of these approaches provide an exact solution for the problem. In this study, a two-stage stochastic-programming method is utilised for the optimal solution of the problem. In addition, a Genetic Algorithm approach is proposed to solve the large-size problems approximately. Finally, the results of the stochastic approach are compared with the deterministic one to demonstrate the value of the stochastic solution.  相似文献   

2.
In this paper, a fuzzy bi-objective mixed-integer linear programming (FBOMILP) model is presented. FBOMILP encompasses the minimisation workload imbalance and total tardiness simultaneously as a bi-objective formulation for an unrelated parallel machine scheduling problem. To make the proposed model more practical, sequence-dependent setup times, machine eligibility restrictions and release dates are also considered. Moreover, the inherent uncertainty of processing times, release dates, setup times and due dates are taken into account and modelled by fuzzy numbers. In order to solve the model for small-scale problems, a two-stage fuzzy approach is proposed. Nevertheless, since the problem belongs to the class of NP-hard problems, the proposed model is solved by two meta-heuristic algorithms, namely fuzzy multi-objective particle swarm optimisation (FMOPSO) and fuzzy non-dominated sorting genetic algorithm (FNSGA-II) for solving large-scale instances. Subsequently, through setting up various numerical examples, the performances of the two mentioned algorithms are compared. When α?=?0.5 (α is a level of risk-taking and when it increases the decision-maker’s risk-taking decreases), FNSGA-II is fairly more effective than FMOPSO and has better performance especially in solving large-sized problems. However, when α rises, it can be stated that FMOPSO moderately becomes more appropriate. Finally, directions for future studies are suggested and conclusion remarks are drawn.  相似文献   

3.
4.
In this paper, a genetic algorithm (GA) with local search is proposed for the unrelated parallel machine scheduling problem with the objective of minimising the maximum completion time (makespan). We propose a simple chromosome structure consisting of random key numbers in a hybrid genetic-local search algorithm. Random key numbers are frequently used in GAs but create additional difficulties when hybrid factors are implemented in a local search. The best chromosome of each generation is improved using a local search during the algorithm, but the better job sequence (which might appear during the local search operation) must be adapted to the chromosome that will be used in each successive generation. Determining the genes (and the data in the genes) that would be exchanged is the challenge of using random numbers. We have developed an algorithm that satisfies the adaptation of local search results into the GAs with a minimum relocation operation of the genes’ random key numbers – this is the main contribution of the paper. A new hybrid approach is tested on a set of problems taken from the literature, and the computational results validate the effectiveness of the proposed algorithm.  相似文献   

5.
6.
Increasing global energy consumption, large variations in its cost and the environmental degradation effects are good reasons for the manufacturing industries to become greener. Green shop floor scheduling is increasingly becoming a vital factor in the sustainable manufacturing. In this paper, a green permutation flowshop scheduling problem with sequence-dependent setup times is studied. Two objectives are considered including minimisation of makespan as a measure of service level and minimisation of total energy consumption as a measure of environmental sustainability. We extend a bi-objective mixed-integer linear programming model to formulate the stated problem. We develop a constructive heuristic algorithm to solve the model. The constructive heuristic algorithm includes iterated greedy (CHIG) and local search (CHLS) algorithms. We develop an efficient energy-saving method which decreases energy consumption, on average, by about 15%. To evaluate the effectiveness of the constructive heuristic algorithm, we compare it with the famous augmented ?-constraint method using various small-sized and large-sized problems. The results confirm that the heuristic algorithm obtains high-quality non-dominated solutions in comparison with the augmented ?-constraint method. Also, they show that the CHIG outperforms the CHLS. Finally, this paper follows a case-study, with in-depth analysis of the model and the constructive heuristic algorithm.  相似文献   

7.
This paper focuses on an identical parallel machine scheduling problem with minimising total tardiness of jobs. There are two major issues involved in this scheduling problem; (1) jobs which can be split into multiple sub-jobs for being processed on parallel machines independently and (2) sequence-dependent setup times between the jobs with different part types. We present a novel mathematical model with meta-heuristic approaches to solve the problem. We propose two encoding schemes for meta-heuristic solutions and three decoding methods for obtaining a schedule from the meta-heuristic solutions. Six different simulated annealing algorithms and genetic algorithms, respectively, are developed with six combinations of two encoding schemes and three decoding methods. Computational experiments are performed to find the best combination from those encoding schemes and decoding methods. Our findings show that the suggested algorithm provides not only better solution quality, but also less computation time required than the commercial optimisation solvers.  相似文献   

8.
Peng Guo  Wenming Cheng 《工程优选》2013,45(11):1564-1585
This article considers the parallel machine scheduling problem with step-deteriorating jobs and sequence-dependent setup times. The objective is to minimize the total tardiness by determining the allocation and sequence of jobs on identical parallel machines. In this problem, the processing time of each job is a step function dependent upon its starting time. An individual extended time is penalized when the starting time of a job is later than a specific deterioration date. The possibility of deterioration of a job makes the parallel machine scheduling problem more challenging than ordinary ones. A mixed integer programming model for the optimal solution is derived. Due to its NP-hard nature, a hybrid discrete cuckoo search algorithm is proposed to solve this problem. In order to generate a good initial swarm, a modified Biskup–Hermann–Gupta (BHG) heuristic called MBHG is incorporated into the population initialization. Several discrete operators are proposed in the random walk of Lévy flights and the crossover search. Moreover, a local search procedure based on variable neighbourhood descent is integrated into the algorithm as a hybrid strategy in order to improve the quality of elite solutions. Computational experiments are executed on two sets of randomly generated test instances. The results show that the proposed hybrid algorithm can yield better solutions in comparison with the commercial solver CPLEX® with a one hour time limit, the discrete cuckoo search algorithm and the existing variable neighbourhood search algorithm.  相似文献   

9.
This paper studies the order acceptance and scheduling problem under a single machine environment when the orders come stochastically during the planning horizon and a sequence-dependent setup time is required between the processing of different types of orders. The objective is to maximise the expected revenue subject to the due date constraints. The problem is formulated as a stochastic dynamic programming model. A rule based on the opportunity cost of the remaining system capacity for the current system state is proposed to make the order acceptance decisions. The remaining system capacity is estimated by a heuristic which generates a good schedule for the accepted orders. Its opportunity cost is estimated by both mathematical programme and greedy heuristic. Computational experiments show that the profit generated by the integrated dynamic programming decision model is much higher than the widely used first-come-first-accept policy in industries and the benefit increases with the length of planning horizon, the arrival rate and the length of lead time. Acceptance decision based on mathematical programming outperforms greedy heuristic by about 7% and its computational time is short. It also shows that the quality of the solutions generated by the opportunity cost based order acceptance rule is satisfactory.  相似文献   

10.
We consider the problem of scheduling unrelated parallel machines with sequence- and machine-dependent setup times and ready times to minimise total weighted tardiness (TWT). We present a mixed integer programming model that can find optimal solutions for the studied problem. We also propose a heuristic (ATCSR_Rm) and an iterated hybrid metaheuristic (IHM) that can find optimal or nearly optimal solutions for the studied problem within a reasonable time. The proposed IHM begins with effective initial solutions, and then improves the initial solutions iteratively. The IHM integrates the principles of the attraction–repulsion mechanism within electromagnetism-like algorithms with local search. If the search becomes trapped at a local optimum, an elite search procedure is developed to help the search escape. We have compared our proposed IHM with two existing metaheuristics, tabu search (TS) and ant colony optimisation (ACO). Computational results show that the proposed IHM outperforms TS and ACO in terms of TWT for problem instances of all sizes.  相似文献   

11.
Wafer sorting is one of the most critical processes involved in semiconductor device fabrication. This study addresses the wafer sorting scheduling problem (WSSP), with minimisation of total setup time as the primary criterion and minimisation of the number of testers used as the secondary criterion. In view of the strongly NP-hard nature of this problem, a simple and effective iterated greedy heuristic is presented. The performance of the proposed heuristic is empirically evaluated by 480 simulation instances based on the characteristics of a real wafer testing shop-floor. The experimental results show that the proposed heuristic is effective and efficient as compared to the state-of-art algorithms developed for the same problem. It is believed that this study has developed an approach that is easy to comprehend and satisfies the practical needs of wafer sorting.  相似文献   

12.
The purpose of this paper is to develop and test intelligible heuristics for the scheduling of production orders that can easily be used in practice. Grounded in a case study, this paper examines the combined effects of assignment and sequencing heuristics on commonly used performance indicators. Discrete event simulation is used in the analysis to adequately capture the complexity found in the case study: production orders differing in many aspects, two unrelated parallel machines with varying and product-specific speed, and set-up times that depend on the (dis)similarity of successive orders. Evaluating 108 strategy–scenario combinations including the base case derived from the case study, it is found that a loading heuristic based on order quantity and scheduled capacity in combination with the shortest set-up heuristic performs best. When compared to the heuristic approach used by the case company, this strategy saves about 13.9% of total machine busy time and increases service level by 10.2%. In addition, using a reduced set of 40 production orders we are able to demonstrate that the best heuristic strategies comes close to results generated in a two-stage optimisation. The gap to optimality is only 3.1% in total busy time on average over all scenarios.  相似文献   

13.
This paper deals with an integrated bi-objective optimisation problem for production scheduling and preventive maintenance in a single-machine context with sequence-dependent setup times. To model its increasing failure rate, the time to failure of the machine is subject to Weibull distribution. The two objectives are to minimise the total expected completion time of jobs and to minimise the maximum of expected times of failure of the machine at the same time. During the setup times, preventive maintenance activities are supposed to be performed simultaneously. Due to the assumption of non-preemptive job processing, three resolution policies are adapted to deal with the conflicts arising between job processing and maintenance activities. Two decisions are to be taken at the same time: find the permutation of jobs and determine when to perform the preventive maintenance. To solve this integrated problem, two well-known evolutionary genetic algorithms are compared to find an approximation of the Pareto-optimal front, in terms of standard multi-objective metrics. The results of extensive computational experiments show the promising performance of the adapted algorithms.  相似文献   

14.
This paper addresses the general assembly line balancing problem where the simple version is enriched by considering sequence-dependent setup times between tasks. Recently, Andres et al. (Andres, C., Miralles, C., and Pastor, R., 2008. Balancing and scheduling tasks in assembly lines with sequence-dependent setup times. European Journal of Operational Research, 187, (3), 1212–1223.) proposed the type I general assembly line balancing problem with setups (GALBPS-I) and developed a mathematical model and several algorithms for solving the problem. In a similar vein, we scrutinised the GALBPS type II problem where the challenge is to find the minimum cycle time for a predefined number of work stations. To solve the problem, we develop a mathematical model and a novel simulated annealing (SA) algorithm to solve such an NP-hard problem. We then employed the Taguchi method as an optimisation technique to extensively tune different parameters of our algorithm and make the classical SA algorithm more efficient in terms of running time and solution quality. Computational results reflected the high efficiency of the SA algorithm in both aspects.  相似文献   

15.
This article proposes hybrid branch and bound algorithms to minimise the makespan for the two-stage assembly scheduling problem with separated setup times. In the studied problem, there are multiple machines at the first stage, each of which produces a component of a job. When all components are available, a single assembly machine at the second stage completes the job. Existing algorithms are based on the state space search and hence suffer from the state space explosion problem. In order to reduce the search space, lower and upper bounds for a partial schedule are proposed. Also, a heuristic function and a dominance rule are developed to guide the search process. Moreover, accelerated factors are introduced to increase the speed of the search. Experimental results indicate that our algorithms outperform an existing method, and can find the optimal or near-optimal schedules in a short time for all tested problems with up to ten thousand jobs and nine first-stage machines.  相似文献   

16.
Rate modifying activity (RM) is a type of maintenance after which the processing rate of the machine increases. RM is a very new topic in academic studies. However, it is very common in real world situations. In this paper, we study the integrated problem of assigning a common due-date to all jobs, scheduling the jobs and making decisions about the position of RM in a single machine environment in which the setup times are sequence dependent. The objective is minimising the summation of earliness costs, tardiness costs and due date related costs. This problem has never been studied in the literature with any arbitrary criterion. We construct a time-dependent travelling salesman problem (TDTSP) formulation for this problem. The position of the optimal common due date and some dominance properties for the position of RM are presented. A branch and bound (B&B) procedure is developed to solve the problem optimally. Numerical results justify the effectiveness of the B&B method for small problems. For larger problems, two robust metaheuristics are proposed.  相似文献   

17.
Two-sided assembly lines are often designed to produce large-sized products, such as automobiles, trucks and buses. In this type of production line, both left-side and right-side of the line are used in parallel. In all studies on two-sided assembly lines, sequence-dependent setup times have not yet been considered. However, in real life applications, setups may exist between tasks. Performing a task directly before another task may influence the latter task inside the same station, because a setup for performing the latter task may be required. Furthermore, if a task is assigned to a station as the last one, then it may cause a setup for performing the first task assigned to that station since the tasks are performed cyclically. In this paper, the problem of balancing two-sided assembly lines with setups (TALBPS) is considered. A mixed integer program (MIP) is proposed to model and solve the problem. The proposed MIP minimises the number of mated-stations (i.e., the line length) as the primary objective and it minimises the number of stations (i.e., the number of operators) as a secondary objective for a given cycle time. A heuristic approach (2-COMSOAL/S) for especially solving large-size problems based on COMSOAL (computer method of sequencing operations for assembly lines) method is also presented. An illustrative example problem is solved using 2-COMSOAL/S. To assess the effectiveness of MIP and 2-COMSOAL/S, a set of test problems are solved. The computational results show that 2-COMSOAL/S is very effective for the problem.  相似文献   

18.
This paper presents a simulation-based experimental study of scheduling rules for scheduling a dynamic flexible flow line problem considering sequence-dependent setup times. A discrete-event simulation model is presented as well as eight adapted heuristic algorithms, including seven dispatching rules and one constructive heuristic, from the literature. In addition, six new proposed heuristics are implemented in the simulation model. Simulation experiments are conducted under various conditions such as setup time ratio and shop utilisation percentage. One of the proposed rules performs better for the mean flow time measure and another one performs better for the mean tardiness measure. Finally, multiple linear regression based meta-models are developed for the best performing scheduling rules.  相似文献   

19.
This paper examines the capacitated lot-sizing and scheduling problem (CLSP) with sequence-dependent setup times, time windows, machine eligibility and preference constraints. Such a problem frequently arises in the semiconductor manufacturing industry by which this paper is motivated. A mixed integer programming (MIP) model is constructed for the problem. Two MIP-based fix-and-optimise algorithms are proposed in which the binary decision variables associated with the assignment of machines are first fixed using the randomised least flexible machine (RLFM) rule and the rest of the decision variables are settled by an MIP solver. Extensive experiments show that the proposed algorithms outperform the state-of-the-art MIP-based fix-and-optimise algorithms in the literature, especially for instances with high machine flexibility and high demand variation.  相似文献   

20.
This paper investigates a meta-heuristic solution approach to the early/tardy single machine scheduling problem with common due date and sequence-dependent setup times. The objective of this problem is to minimise the total amount of earliness and tardiness of jobs that are assigned to a single machine. The popularity of just-in-time (JIT) and lean manufacturing scheduling approaches makes the minimisation of earliness and tardiness important and relevant. In this research the early/tardy problem is solved by Meta-RaPS (meta-heuristic for randomised priority search). Meta-RaPS is an iterative meta-heuristic which is a generic, high level strategy used to modify greedy algorithms based on the insertion of a random element. In this case a greedy heuristic, the shortest adjusted processing time, is modified by Meta-RaPS and the good solutions are improved by a local search algorithm. A comparison with the existing ETP solution procedures using well-known test problems shows Meta-RaPS produces better solutions in terms of percent difference from optimal. The results provide high quality solutions in reasonable computation time, demonstrating the effectiveness of the simple and practical framework of Meta-RaPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号