共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an evolutionary algorithm for generic multiobjective design optimization problems. The algorithm is based on nondominance of solutions in the objective and constraint space and uses effective mating strategies to improve solutions that are weak in either. Since the methodology is based on nondominance, scaling and aggregation affecting conventional penalty function methods for constraint handling does not arise. The algorithm incorporates intelligent partner selection for cooperative mating. The diversification strategy is based on niching which results in a wide spread of solutions in the parametric space. Results of the algorithm for the design examples clearly illustrate the efficiency of the algorithm in solving multidisciplinary design optimization problems. 相似文献
2.
When attempting to optimize the design of engineered systems, the analyst is frequently faced with the demand of achieving several targets (e.g. low costs, high revenues, high reliability, low accident risks), some of which may very well be in conflict. At the same time, several requirements (e.g. maximum allowable weight, volume etc.) should also be satisfied. This kind of problem is usually tackled by focusing the optimization on a single objective which may be a weighed combination of some of the targets of the design problem and imposing some constraints to satisfy the other targets and requirements. This approach, however, introduces a strong arbitrariness in the definition of the weights and constraints levels and a criticizable homogenization of physically different targets, usually all translated in monetary terms.The purpose of this paper is to present an approach to optimization in which every target is considered as a separate objective to be optimized. For an efficient search through the solution space we use a multiobjective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets. Based on this information, the decision maker can select the best compromise among these objectives, without a priori introducing arbitrary weights. 相似文献
3.
Marios K. Karakasis 《工程优选》2013,45(8):941-957
This article is concerned with the optimal use of metamodels in the context of multi-objective evolutionary algorithms which are based on computationally expensive function evaluations. The goal is to capture Pareto fronts of optimal solutions with the minimum computational cost. In each generation during the evolution, the metamodels act as filters that distinguish the most promising individuals, which will solely undergo exact and costly evaluations. By means of the so-called inexact pre-evaluation phase, based on continuously updated local metamodels, most of the non-promising individuals are put aside without aggravating the overall cost. The gain achieved through this technique is amazing in single-objective problems. However, with more than one objective, noticeable performance degradation occurs. This article scrutinizes the role of metamodels in multi-objective evolutionary algorithms and proposes ways to overcome expected weaknesses and improve their performance. Minimization of mathematical functions as well as aerodynamic shape optimization problems are used for demonstration purposes. 相似文献
4.
A novel approach is presented in this article for obtaining inverse mapping of thermodynamically Pareto-optimized ideal turbojet engines using group method of data handling (GMDH)-type neural networks and evolutionary algorithms (EAs). EAs are used in two different aspects. Firstly, multi-objective EAs (non–dominated sorting genetic algorithm-II) with a new diversity preserving mechanism are used for Pareto-based optimization of the thermodynamic cycle of ideal turbojet engines considering four important conflicting thermodynamic objectives, namely, specific thrust ({ST}), specific fuel consumption ({SFC}), propulsive efficiency (ηp), and thermal efficiency (ηt). The best obtained Pareto front, as a result, is a data table representing data pairs of non-dominated vectors of design variables, which are Mach number and pressure ratio, and the corresponding four objective functions. Secondly, EAs and singular value decomposition are deployed simultaneously for optimal design of both connectivity configuration and the values of coefficients, respectively, involved in GMDH-type neural networks which are used for the inverse modelling of the input–output data table obtained as the best Pareto front. Therefore, two different polynomial relations among the four thermo-mechanical objectives and both Mach number and pressure ratio are searched using that Pareto front. The results obtained in this paper are very promising and show that such important relationships may exist and could be discovered using both multi-objective EAs and evolutionarily designed GMDH-type neural networks. 相似文献
5.
Heidi A. Taboada Fatema Baheranwala David W. Coit Naruemon Wattanapongsakorn 《Reliability Engineering & System Safety》2007,92(3):314-322
For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set. 相似文献
6.
Multi-objective optimization based on meta-modeling by using support vector regression 总被引:2,自引:0,他引:2
Practical engineering design problems have a black-box objective function whose forms are not explicitly known in terms of design variables. In those problems, it is very important to make the number of function evaluations as few as possible in finding an optimal solution. So, in this paper, we propose a multi-objective optimization method based on meta-modeling predicting a form of each objective function by using support vector regression. In addition, we discuss a way how to select additional experimental data for sequentially revising a form of objective function. Finally, we illustrate the effectiveness of the proposed method through some numerical examples. 相似文献
7.
《Materials and Manufacturing Processes》2008,23(2):130-137
Mechanical properties of transformation induced plasticity (TRIP)-aided multiphase steels are modeled by neural networks using two methods of reducing the network connectivity, viz. a pruning algorithm and a predator prey algorithm, to gain understanding on the impact of steel composition and treatment. The pruning algorithm gradually reduces the complexity of the lower layer of connections, removing less significant connections. In the predator prey algorithm, a genetic algorithm based multi-objective optimization technique evolves neural networks on a Pareto front, simultaneously minimizing training error and network size. The results show that the techniques find parsimonious models and, furthermore, extract useful knowledge from the data. 相似文献
8.
A. C. Nearchou 《国际生产研究杂志》2013,51(8):2275-2297
This paper is concerned with the solution of the multi-objective single-model deterministic assembly line balancing problem (ALBP). Two bi-criteria objectives are considered:
-
Minimising the cycle time of the assembly line and the balance delay time of the workstations.
-
Minimising the cycle time and the smoothness index of the workload of the line.
-
It formulates the cost function of each individual ALB solution as a weighted-sum of multiple objectives functions with self-adapted weights.
-
It maintains a separate population with diverse Pareto-optimal solutions.
-
It injects the actual evolving population with some Pareto-optimal solutions.
-
It uses a new modified scheme for the creation of the mutant vectors.
9.
《Materials and Manufacturing Processes》2012,27(2):130-137
Mechanical properties of transformation induced plasticity (TRIP)-aided multiphase steels are modeled by neural networks using two methods of reducing the network connectivity, viz. a pruning algorithm and a predator prey algorithm, to gain understanding on the impact of steel composition and treatment. The pruning algorithm gradually reduces the complexity of the lower layer of connections, removing less significant connections. In the predator prey algorithm, a genetic algorithm based multi-objective optimization technique evolves neural networks on a Pareto front, simultaneously minimizing training error and network size. The results show that the techniques find parsimonious models and, furthermore, extract useful knowledge from the data. 相似文献
10.
Reliability optimization problems such as the redundancy allocation problem (RAP) have been of considerable interest in the past. However, due to the restrictions of the design space formulation, they may not be applicable in all practical design problems. A method with high modelling freedom for rapid design screening is desirable, especially in early design stages. This work presents a novel approach to reliability optimization. Feature modelling, a specification method originating from software engineering, is applied for the fast specification and enumeration of complex design spaces. It is shown how feature models can not only describe arbitrary RAPs but also much more complex design problems. The design screening is accomplished by a multi-objective evolutionary algorithm for probabilistic objectives. Comparing averages or medians may hide the true characteristics of this distributions. Therefore the algorithm uses solely the probability of a system dominating another to achieve the Pareto optimal set. We illustrate the approach by specifying a RAP and a more complex design space and screening them with the evolutionary algorithm. 相似文献
11.
12.
The paper describes a novel algorithm for finding Pareto optimal solutions to multi-objective optimization problems based on the features of a biological immune system. Inter-relationships within the proposed multi-objective immune algorithm (MOIA) resemble antibody-antigen relationships in terms of specificity, germinal center, and the memory characteristics of adaptive immune responses. Gene fragment recombination and several antibody diversification schemes (including somatic recombination, somatic mutation, gene conversion, gene reversion, gene drift, and nucleotide addition) were incorporated into the MOIA in order to improve the balance between exploitation and exploration. Using five performance metrics, MOIA simulation figures were compared with data derived from a strength Pareto evolutionary algorithm (SPEA). The results indicate that the MOIA outperformed the SPEA in several areas. 相似文献
13.
C. Dimopoulos 《工程优选》2013,45(5):551-565
Although many methodologies have been proposed for solving the cell-formation problem, few of them explicitly consider the existence of multiple objectives in the design process. In this article, the development of multi-objective genetic programming single-linkage cluster analysis (GP-SLCA), an evolutionary methodology for the solution of the multi-objective cell-formation problem, is described. The proposed methodology combines an existing algorithm for the solution of single-objective cell-formation problems with NSGA-II, an elitist evolutionary multi-objective optimization technique. Multi-objective GP-SLCA is able to generate automatically a set of non-dominated solutions for a given multi-objective cell-formation problem. The benefits of the proposed approach are illustrated using an example test problem taken from the literature and an industrial case study. 相似文献
14.
《Materials and Manufacturing Processes》2012,27(3):320-330
Existing acid leaching data for low-grade manganese ores are modeled using an evolving neural net. Three distinct cases of leaching in the presence of glucose, sucrose and lactose have been considered and the results compared with an existing analytical model. The neural models are then subjected to bi-objective optimization, using a predator–prey genetic algorithm, maximizing recovery in tandem with a minimization of the acid concentration. The resulting Pareto frontiers are analyzed and discussed. 相似文献
15.
Availability allocation to repairable systems with genetic algorithms: a multi-objective formulation 总被引:2,自引:0,他引:2
This paper describes a methodology based on genetic algorithms (GA) and experiments plan to optimize the availability and the cost of reparable parallel-series systems. It is a NP-hard problem of multi-objective combinatorial optimization, modeled with continuous and discrete variables. By using the weighting technique, the problem is transformed into a single-objective optimization problem whose constraints are then relaxed by the exterior penalty technique. We then propose a search of solution through GA, whose parameters are adjusted using experiments plan technique. A numerical example is used to assess the method. 相似文献
16.
In this paper, we investigate three recently proposed multi-objective optimization algorithms with respect to their application
to a design-optimization task in fluid dynamics. The usual approach to render optimization problems is to accumulate multiple
objectives into one objective by a linear combination and optimize the resulting single-objective problem. This has severe
drawbacks such that full information about design alternatives will not become visible. The multi-objective optimization algorithms
NSGA-II, SPEA2 and Femo are successfully applied to a demanding shape optimizing problem in fluid dynamics. The algorithm
performance will be compared on the basis of the results obtained. 相似文献
17.
Power system generation scheduling is an important issue both from the economical and environmental safety viewpoints. The scheduling involves decisions with regards to the units start-up and shut-down times and to the assignment of the load demands to the committed generating units for minimizing the system operation costs and the emission of atmospheric pollutants.As many other real-world engineering problems, power system generation scheduling involves multiple, conflicting optimization criteria for which there exists no single best solution with respect to all criteria considered. Multi-objective optimization algorithms, based on the principle of Pareto optimality, can then be designed to search for the set of nondominated scheduling solutions from which the decision-maker (DM) must a posteriori choose the preferred alternative. On the other hand, often, information is available a priori regarding the preference values of the DM with respect to the objectives. When possible, it is important to exploit this information during the search so as to focus it on the region of preference of the Pareto-optimal set.In this paper, ways are explored to use this preference information for driving a multi-objective genetic algorithm towards the preferential region of the Pareto-optimal front. Two methods are considered: the first one extends the concept of Pareto dominance by biasing the chromosome replacement step of the algorithm by means of numerical weights that express the DM’ s preferences; the second one drives the search algorithm by changing the shape of the dominance region according to linear trade-off functions specified by the DM.The effectiveness of the proposed approaches is first compared on a case study of literature. Then, a nonlinear, constrained, two-objective power generation scheduling problem is effectively tackled. 相似文献
18.
R. Jha F. Pettersson G. S. Dulikravich H. Saxen 《Materials and Manufacturing Processes》2015,30(4):488-510
Data-driven models were constructed for the mechanical properties of multi-component Ni-based superalloys, based on systematically planned, limited experimental data using a number of evolutionary approaches. Novel alloy design was carried out by optimizing two conflicting requirements of maximizing tensile stress and time-to-rupture using a genetic algorithm-based multi-objective optimization method. The procedure resulted in a number of optimized alloys having superior properties. The results were corroborated by a rigorous thermodynamic analysis and the alloys found were further classified in terms of their expected levels of hardenabilty, creep, and corrosion resistances along with the two original objectives that were optimized. A number of hitherto unknown alloys with potential superior properties in terms of all the attributes ultimately emerged through these analyses. This work is focused on providing the experimentalists with linear correlations among the design variables and between the design variables and the desired properties, non-linear correlations (qualitative) between the design variables and the desired properties, and a quantitative measure of the effect of design variables on the desired properties. Pareto-optimized predictions obtained from various data-driven approaches were screened for thermodynamic equilibrium. The results were further classified for additional properties. 相似文献
19.
A number of multi-objective evolutionary algorithms have been proposed in recent years and many of them have been used to solve engineering design optimization problems. However, designs need to be robust for real-life implementation, i.e. performance should not degrade substantially under expected variations in the variable values or operating conditions. Solutions of constrained robust design optimization problems should not be too close to the constraint boundaries so that they remain feasible under expected variations. A robust design optimization problem is far more computationally expensive than a design optimization problem as neighbourhood assessments of every solution are required to compute the performance variance and to ensure neighbourhood feasibility. A framework for robust design optimization using a surrogate model for neighbourhood assessments is introduced in this article. The robust design optimization problem is modelled as a multi-objective optimization problem with the aim of simultaneously maximizing performance and minimizing performance variance. A modified constraint-handling scheme is implemented to deal with neighbourhood feasibility. A radial basis function (RBF) network is used as a surrogate model and the accuracy of this model is maintained via periodic retraining. In addition to using surrogates to reduce computational time, the algorithm has been implemented on multiple processors using a master–slave topology. The preliminary results of two constrained robust design optimization problems indicate that substantial savings in the actual number of function evaluations are possible while maintaining an acceptable level of solution quality. 相似文献
20.
Ranjan Kumar Kazuhiro Izui Shinji Nishiwaki 《Reliability Engineering & System Safety》2009,94(4):891-904
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)—the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets. 相似文献