共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
In this paper, we propose a fast and robust face recognition method named enhancing sparsity via full rank decomposition. The proposed method first represents the test sample as a linear combination of the training data as the same as sparse representation, then make a full rank decomposition of the training data matrix. We obtain the generalized inverse of the training data matrix and then solve the general solution of the linear equation directly. For obtaining the optimum solution to represent the test sample, we use the least square method to solve it. We classify the test sample into the class which has the minimal reconstruction error. Our method can solve the optimum solution of the linear equation, and it is more suitable for face recognition than sparse representation classifier. The extensive experimental results on publicly available face databases demonstrate the effectiveness of the proposed method for face recognition. 相似文献
3.
针对人脸识别中,识别效果易受人脸修饰、部分遮挡、噪声干扰等不确定因素影响的问题,提出一种MCDPCA人脸识别算法以改进识别效果。基于主成分分析(PCA)进行特征脸提取,结合最小协方差行列式方法(MCD)进行异常点检测和抗噪。针对人脸图像使用MCD算法,求出稳健的协方差矩阵估计,基于此协方差估计矩阵使用PCA技术提取重要的人脸特征用于识别。实验结果表明,在有遮挡和噪声干扰的情况下,相比传统PCA方法,该方法明显提高了人脸图像识别率。 相似文献
4.
5.
Multimedia Tools and Applications - In real-world surveillance scenario, the face recognition (FR) systems pose a lot of challenges due to the captured low-resolution (LR) and noisy probe images. A... 相似文献
6.
7.
In this paper, we describe a novel multiclass boosting algorithm, EDBoost, to achieve robust face recognition directly in JPEG compressed domain. In comparison with existing boosting algorithms, the proposed EDBoost exploits Euclidean distance (ED) to eliminate non-effective weak classifiers in each iteration of the boosted learning, and hence improves both feature selection and classifier learning by using fewer weak classifiers and producing lower error rates. When applied to face recognition, the EDBoost algorithm is capable of selecting the most discriminative DCT features directly in JPEG compressed domain to achieve high recognition performances. In addition, a new DC replacement scheme is also proposed to reduce the effect of illumination changes. In comparison with the existing techniques, the proposed scheme achieves robust face recognition without losing the important information carried by all DC coefficients. Extensive experiments support the conclusion that the proposed algorithm outperforms all representative existing techniques in terms of boosted learning, multiclass classification, lighting effect reduction and face recognition rates. 相似文献
8.
An improved SIFT algorithm for robust emotion recognition under various face poses and illuminations
Neural Computing and Applications - To address the variabilities of the number and position of extracted feature points for the traditional scale-invariant feature transform (SIFT) method, an... 相似文献
9.
The models of low-dimensional manifold and sparse representation are two well-known concise models that suggest that each data can be described by a few characteristics. Manifold learning is usually investigated for dimension reduction by preserving some expected local geometric structures from the original space into a low-dimensional one. The structures are generally determined by using pairwise distance, e.g., Euclidean distance. Alternatively, sparse representation denotes a data point as a linear combination of the points from the same subspace. In practical applications, however, the nearby points in terms of pairwise distance may not belong to the same subspace, and vice versa. Consequently, it is interesting and important to explore how to get a better representation by integrating these two models together. To this end, this paper proposes a novel coding algorithm, called Locality-Constrained Collaborative Representation (LCCR), which introduce a kind of local consistency into coding scheme to improve the discrimination of the representation. The locality term derives from a biologic observation that the similar inputs have similar codes. The objective function of LCCR has an analytical solution, and it does not involve local minima. The empirical studies based on several popular facial databases show that LCCR is promising in recognizing human faces with varying pose, expression and illumination, as well as various corruptions and occlusions. 相似文献
10.
In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently a number of approaches have been proposed to deal with such variability.The aim of this work is twofold: first a survey on the existing techniques proposed to obtain an illumination robust recognition is given, and then a new method, based on the fusion of different classifiers, is proposed. The experiments carried out on different face databases confirm the effectiveness of the approach. 相似文献
11.
12.
Yali Peng Lingjun Li Shigang Liu Jun Li Xili Wang 《Machine Vision and Applications》2018,29(6):991-1007
In sparse representation algorithms, a test sample can be sufficiently represented by exploiting only the training samples from the same class. However, due to variations of facial expressions, illuminations and poses, the other classes also have different degrees of influence on the linear representation of the test sample. Therefore, in order to represent a test sample more accurately, we propose a new sparse representation-based classification method which can strengthen the discriminative property of different classes and obtain a better representation coefficient vector. In our method, we introduce a weighted matrix, which can make small deviations correspond to higher weights and large deviations correspond to lower weights. Meanwhile, we improve the constraint term of representation coefficients, which can enhance the distinctiveness of different classes and make a better positive contribution to classification. In addition, motivated by the work of ProCRC algorithm, we take into account the deviation between the linear combination of all training samples and of each class. Thereby, the discriminative representation of the test sample is further guaranteed. Experimental results on the ORL, FERET, Extended-YaleB and AR databases show that the proposed method has better classification performance than other methods. 相似文献
13.
针对能量谱的不平衡性会影响人脸识别效果的问题,基于白化脸的概念提出了白化主成分分析类算法的框架.该算法框架使用1个白化滤波器和1个低通滤波器对原始图像进行预处理,然后结合传统的PCA类算法提取特征向量(或矩阵),最后通过k-NN分类方法进行人脸识别.利用ORL人脸图像库进行实验,实验结果表明该算法框架改善了人脸识别的效... 相似文献
14.
15.
In order to solve robust PageRank problem a saddle-point Mirror Descent algorithm for solving convex-concave optimization problems is enhanced and studied. The algorithm is based on two proxy functions, which use specificities of value sets to be optimized on (min-max search). In robust PageRank case the ones are entropy-like function and square of Euclidean norm. The saddle-point Mirror Descent algorithm application to robust PageRank leads to concrete complexity results, which are being discussed alongside with illustrative numerical example. 相似文献
16.
《Pattern recognition》2014,47(2):535-543
Robust face recognition (FR) is an active topic in computer vision and biometrics, while face occlusion is one of the most challenging problems for robust FR. Recently, the representation (or coding) based FR schemes with sparse coding coefficients and coding residual have demonstrated good robustness to face occlusion; however, the high complexity of l1-minimization makes them less useful in practical applications. In this paper we propose a novel coding residual map learning scheme for fast and robust FR based on the fact that occluded pixels usually have higher coding residuals when representing an occluded face image over the non-occluded training samples. A dictionary is learned to code the training samples, and the distribution of coding residuals is computed. Consequently, a residual map is learned to detect the occlusions by adaptive thresholding. Finally the face image is identified by masking the detected occlusion pixels from face representation. Experiments on benchmark databases show that the proposed scheme has much lower time complexity but comparable FR accuracy with other popular approaches. 相似文献
17.
In this paper, we propose an effective feature extraction algorithm, called Multi-Subregion based Correlation Filter Bank (MS-CFB), for robust face recognition. MS-CFB combines the benefits of global-based and local-based feature extraction algorithms, where multiple correlation filters corresponding to different face subregions are jointly designed to optimize the overall correlation outputs. Furthermore, we reduce the computational complexity of MS-CFB by designing the correlation filter bank in the spatial domain and improve its generalization capability by capitalizing on the unconstrained form during the filter bank design process. MS-CFB not only takes the differences among face subregions into account, but also effectively exploits the discriminative information in face subregions. Experimental results on various public face databases demonstrate that the proposed algorithm provides a better feature representation for classification and achieves higher recognition rates compared with several state-of-the-art algorithms. 相似文献
18.
Zhendong Wu Zipeng Yu Jie Yuan Jianwu Zhang 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2016,20(3):1007-1019
The theory of compressive sensing applies the sparse representation to the extraction of useful information from signals and brings a breakthrough to the theory of signal sampling. Based on compressive sensing, sparse representation-based classification (SRC) is proposed. SRC uses the compressibility of the image data to represent the facial image sparsely and could solve the problems of both massive calculation and information loss in dealing with signals. SRC does not, however, deal with the effects of variable illumination, posture and incomplete face image, which could result in severe performance degradation. This paper studies the differences between SRC recognition and human recognition. We find that there is an obvious disadvantage in the SRC algorithm, and it will significantly affect the face recognition performance in actual environment, especially for the variable illumination, posture and incomplete face image. To overcome the disadvantage of SRC algorithm, we propose an SRC-based twice face recognition algorithm named T_SRC. T_SRC uses bidirectional PCA, linear discriminant analysis and GradientFace to execute multichannel analysis, which could extract more “holistic/configural” face features in actual environment than by using SRC algorithm directly. Based on the multichannel analysis, we identify the test image by SRC firstly. Then, by analyzing the residual, this algorithm could decide whether the twice recognition is needed. If the twice recognition is needed, T_SRC extracts the facial details (“featural” face features) by the improved Harris point and Gabor filter detector. We suppose that the facial details are more stable than the whole face in actual environment, and later experiments verify our assumption. At last, this algorithm identifies the class of the test image by SRC again. The results of the experiments prove that the T_SRC algorithm has better recognition rate than SRC. 相似文献
19.
20.
Sparse representation methods based on l1 and/or l2 regularization have shown promising performance in different applications. Previous studies show that the l1 regularization based representation has more sparse property, while the l2 regularization based representation is much simpler and faster. However, when dealing with noisy data, both naive l1 and l2 regularization suffer from the issue of unsatisfactory robustness. In this paper, we explore the method to implement an antinoise sparse representation method for robust face recognition based on a joint version of l1 and l2 regularization. The contributions of this paper are mainly shown in the following aspects. First, a novel objective function combining both l1 and l2 regularization is proposed to implement an antinoise sparse representation. An iterative fitting operation via l1 regularization is integrated with l2 norm minimization, to obtain an antinoise classification. Second, the rationale how the proposed method produces promising discriminative and antinoise performance for face recognition is analyzed. The l2 regularization enhances robustness and runs fast, and l1 regularization helps cope with the noisy data. Third, the classification robustness of the proposed method is demonstrated by extensive experiments on several benchmark facial datasets. The method can be considered as an option for the expert systems for biometrics and other recognition problems facing unstable and noisy data. 相似文献