首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallization of Al2O3-rich glasses in the system SiO2-Al2O3 which were prepared by flame-spraying and/or splat-cooling was studied by DTA, electron microscopy, and X-ray diffraction. Over a wide range of compositions, the crystallization temperature ( Tx ) remained near 1000°C, changing smoothly with composition. In all cases crystallization of mullite was detected by X-ray diffraction. In the low-Al2O3 region, coarsening of the microstructure during crystallization was observed by electron microscopy. In the high-Al2O3 region mullite and γ-Al2O3 cocrystallized; this behavior may be interpreted as evidence of a cooperative process of crystallization at the respective Tx 's. The crystallite size of the mullite immediately after rapid crystallization increased continuously with increasing Al2O3 content. In light of the Tx data, the adequacy of the evidence for the proposed metastable miscibility gap in the SiO2-Al2O3 system is questioned.  相似文献   

2.
The thermal evolution of a mullite gel of composition 2Al2O3·SiO2 has been investigated. The gel crystallized at 1300°C into an alumina-rich mullite and corundum, instead of single-phase 2Al2O3·SiO2 mullite. The amount of Al2O3 that dissolved in the mullite structure has been determined in the 1300–1780°C temperature range by measuring the mullite lattice parameters. A maximum limit for the amount of Al2O3 in solid solution has been observed. Densification of the gel powders has been analyzed up to temperatures of 1780°C. The microstructure of dense materials always showed the presence of residual Al2O3 particles.  相似文献   

3.
Formation of Silicon-Aluminum Spinel   总被引:1,自引:0,他引:1  
Characterization of the intermediate cubic phase formed during the transformation of coprecipitated SiO2-Al2O3 gel on heating was studied and X-ray diffraction methods are reviewed and criticized. Coprecipitated gels of different SiO2/Al2O3 ratios were prepared; all showed a 980°C exotherm followed by crystallization of the cubic phase and liberation of SiO2. Alkali extraction of SiO2 showed two types present in the 980°-heated product. One variety is free amorphous SiO2 and the other, chemically bonded to alumina in the crystalline cubic phase, was isolated and characterized as Si-Al spinel with the same composition as mullite. Thus, its formation from the gel of mullite composition shows the highest exotherm and the measured density agrees approximately with the theoretically calculated value.  相似文献   

4.
Mullite and mullite/ZrO2 ceramics were fabricated starting from Si/Al2O3 and Si/Al2O3/ZrO2 powder mixtures, which were mixed and attrition milled with TZP balls in water. Isopressed powder compacts were subjected to a heat treatment in air, during which the Si was oxidized to SiO2. At } 1410°C, reaction between Al2O3 and SiO2 occurred, resulting in mullite (3Al2O3·2SiO2). Depending on the composition of the starting powders, the end product was either single-phase mullite or a mullite composite. The reaction process was monitored by thermogravimetry and dilatometry. It was found that the microstructure and mechanical properties of the reaction-formed mullite ceramics were significantly improved by ZrO2 additions.  相似文献   

5.
Alumina reacts with 1 atm of SiF4 below 660°± 7°C to form A1F3 and SiO2. At higher temperatures the product is a mixture of fluorotopaz and AIF3. Mixtures of fluorotopaz and AIF3 decompose in 1 atm of SiF4 at 973°± 8°C and form tabular α-alumina. The equilibrium vapor pressure of SiF4 above mixtures of fluorotopaz and AlF3 is log p (atm) = 9.198 – 11460/ T (K). Fluorotopaz itself decomposes at 1056°± 5°C in 1 atm of SiF4 to give acicular mullite, 2Al2O3.1.07SiO2. Alumina and mullite are stable in the presence of 1 atm of SiF4 above 973° and 1056°C, respectively. The phase diagram of the system SiO2-Al2O3-SiF4 shows only gas-solid equilibria.  相似文献   

6.
SiO2-Al2O3 melts containing 42 and 60 wt% A12O3 were homogenized at 2090°C (∼10°) and crystallized by various heat treatment schedules in sealed molybdenum crucibles. Mullite containing ∼78 wt% A12O3 precipitated from the 60 wt% A12O3 melts at ∼1325°± 20°C, which is the boundary of a previously calculated liquid miscibility gap. When the homogenized melts were heat-treated within this gap, the A12O3 in the mullite decreased with a corresponding increase in the Al2O3 content of the glass. A similar decrease of Al2O3 in mullite was observed when crystallized melts were reheated at 1725°± 10°C; the lowest A12O3 content (∼73.5 wt%) was in melts that were reheated for 110 h. All melts indicated that the composition of the precipitating mullite was sensitive to the heat treatment of the melts.  相似文献   

7.
Infrared-Transparent Mullite Ceramic   总被引:1,自引:0,他引:1  
Mullite ceramic, transparent in the infrared, was prepared by hot-pressing and hot-isostatically pressing starting materials derived from alkyloxides. A composition with 72.3 wt% Al2O3 yielded transparent, submicrometer grain size bodies at 1630°C, whereas higher temperatures produced glass-containing microstructures. A composition with 76 wt% A12O3 formed precipitates of α-Al2O3 at the consolidation temperature, which could be removed by subsequent annealing between 1800° and 1850°C. Spectral transmittance and absorption coefficients of the bodies are reported. The formation of the second phases was linked to phase equilibria and grain growth that promoted compositional equilibration of the mullite phase. The results suggest adjustments to phase boundaries in the high-temperature segment of the SiO2-Al2O3 phase diagram.  相似文献   

8.
Stoichiometric mullite (71.38 wt% Al2O3-28.17 wt% SiO2) and 80 wt% Al2O3-20 wt% SiO2 gels were prepared by the single-phase and/or diphasic routes. Dense sintered bodies were prepared from both sets of gels in the Al2O3-SiO2 system. Apparent densities of 96% and 97% of theoretical density were measured for the diphasic (using two sols) mullite samples sintered at 1200° and 1300°C for 100 min, respectively; this compared with 85% and 94% for the single-phase xerogels under the same conditions, and to much lower values for mullite prepared from conventional mixed powders. The microstructure of the mullite pellets from diphasic xerogel precursors is also considerably finer.  相似文献   

9.
Starting powders containing 72 wt% Al2O3 and 28 wt% SiO2, were prepared by sol-gel methods classified as colloidal and polymeric. Compacts fired at 1700°C showed significant differences in microstructure. The specimens formed with the colloidal powder had mullite grains of prismatic shape and a liquid phase; with polymeric powder, mullite grains were granular with no liquid phase present. It is shown that the mullite grains in the first case are higher in AI2O3 content, resulting in an excess of SiO2 which is the base for the liquid phase. In the second case, the mullite grains have the same Al2O3 content as the starting powders. The presence of a liquid phase in the first case is considered to be metastable, resulting from the nature of the starting materials and processing conditions employed.  相似文献   

10.
Phase Transformation of Diphasic Aluminosilicate Gels   总被引:1,自引:0,他引:1  
Aluminosilicate gels with compositions Al2O2/SiO2 and 2 were prepared by gelling a mixture of colloidal pseudo-boehmite and a silica sol prepared from acid-hydrolyzed Si(OC2H5)4. Upon heating the pseudo-boehmite transforms to γ-Al2O3 around 400°C, then to δ-Al2O3 at 1050°C, and at 1200°C reacts with amorphous SiO2 to form mullite. Some twinned θ-Al2O3 forms before mullite. Nonstoichiometric specimens have a similar transformation sequence, but form mullite grains with inclusions of either Al2O3 or cristobalite, often associated with dislocation networks or micropores. Mullite grains are formed by nucleation and growth and have equiaxed shape.  相似文献   

11.
Boehmite (AlO(OH)) solid-solution gel, which yields stoichiometric mullite (3Al2O32SiO2) at high temperatures, has been prepared by the hydrazine method. The formation process leading to 3Al2O32SiO2 is discussed. The as-prepared powder and powders heated below 1200°C consist of very fine particles showing needlelike morphology, whereas the particles of mullite powder show thin prismatic morphology. The mullite powder after heating at 1300°C has a high surface area (87 m2/g).  相似文献   

12.
Dense mullite ceramics were successfully produced at temperatures below 1300°C from amorphous SiO2-coated gamma-Al2O3 particle nanocomposites (AS-gammaA). This method reduces processing temperatures by similar/congruent300°C or more with respect to amorphous SiO2-coated alpha-Al2O3 particle microcomposites (AS-alphaA) and to other Al2O3-SiO2 reaction couples. The good densification behavior and the relatively low mullite formation temperature make AS-gammaA nanocomposites an excellent matrix raw material for polycrystalline aluminosilicate fiber-reinforced mullite composites.  相似文献   

13.
The independent crystallization sequence of an Al2O3 component is modified in the presence of SiO2 and vice versa. Mixed SiO2-Al2O3, gel (28 wt% SiO2 and 72 wt% Al2O3) forms neither cristobalite nor γ-Al2O3 and corundum at 1000°C but forms Si-Al spinel; an amorphous aluminosilicate phase invariably also forms after the gel is heated. However, the composition of this amorphous aluminosilicate phase is not as yet known.  相似文献   

14.
A fine, uniform A12O3-SiO2 powder was prepared by heterocoagulation of narrow Al2O3 and SiO2 powders. This composite powder was dispersed, compacted, and fired in air at 900° to 1580°C for 1 to 13 h. Full density was achieved at 1550°C with the formation of a mullite phase. Relative densities of 83% and 98% (0.3 μm grain size) were measured for samples sintered at 1200°C for 13 h and at 1400°C for 1 h, respectively.  相似文献   

15.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

16.
The structure of mullite, which has a composition ranging from 3Al2O3·2SiO2 to Al2O3·2SiO2, contains ordered oxygen vacancies. Sillimanite, Al2O3·SiO2, has a similar structure but with no vacancies. The indentation hardness of polycrystalline mullite (3Al2O3·2SiO2) was measured from room temperature up to 1400°C and compared with that of single-crystal sillimanite (Al2O3·SiO2) up to 1300°C. It was found that both materials show the same variation in hardness with temperature, suggesting that the structures have a similar resistance to plastic deformation, and therefore that the oxygen vacancies in the mullite structure are not the primary cause of mullite's resistance to high-temperature deformation.  相似文献   

17.
Thermodynamic data on activities, activity coefficients, and free energies of mixing in SiO2-Al2O3 solutions were calculated from the phase diagram. Positive deviations from ideal mixing in the thermodynamic data suggest a tendency for liquid immiscibility in both SiO2- and Al2O3-rich compositions. The calculated data were used to estimate regions of liquid-liquid immiscibility. A calculated metastable liquid miscibility gap with a consolute temperature of ∼1540°C at a critical composition of ∼36 mol% Al2O3 was considered to be thermodynamically most probable; the gap extended from ∼11 to °49 mol% Al2O3 at 1100°C. SiO2-rich glass compositions showed evidence of glass-in-glass phase separation when examined by direct transmission electron microscopy.  相似文献   

18.
Sample disks prepared from Al2O3 (61 wt%), SiO2 (28 wt%), and Fe2O3(II wt%) powders were sintered at 1270° and 1440°C and then annealed between 1300° and 1670°C. The annealed samples consisted of mullite as the main compound with minor amounts of glass and sometimes magnetite. The iron content of the mullites decreases strongly from ∼ 10.5 wt% Fe2O3 at 1300°C to ∼ 2.5 wt% Fe2O3 at 1670°C. A complex temperature-controlled exsolution mechanism of iron from mullite is considered.  相似文献   

19.
The influence of annealing treatments at temperatures of 900°C up to 1630°C on the microstructure of a 3Al2O32SiO2 mullite that contains a small amount of alkali (<3 wt%) has been studied. Annealing treatments of a base mullite material at the sintering temperature (1630°C) and at two temperatures lower (900°C) and higher (1200°C) than the lowest invariant points of the SiO2-Al2O3-Na2O system have been performed. Microstructures have been characterized by using scanning and transmission electron microscopy. Special attention has been given to grain-boundary characteristics-particularly the amount, composition, and distribution of the remaining glasses. Aging of this material at high temperature leads to a redistribution of the microstructure toward an equilibrium that involves the dissolution of the mullite grains, formation of a liquid phase, and liquid-phase grain growth. As the aging temperature increases, liquid-phase grain growth progressively overcomes the effect of the dissolution of mullite and a bimodal microstructure with an increasing number of large, tabular grains develops.  相似文献   

20.
The influence of attrition milling on the thermal decomposition of kyanite (Al2O3·SiO2) to mullite (3Al2O3·2SiO2) and SiO2, and its subsequent sintering, was studied. A commercial kyanite was attrition-milled for times up to 12 h. Dilatometry confirmed that as-received unmilled kyanite decomposes between 1300° and 1435°C. The decomposition reaction is slow initially and accelerates during the later stages until about one-half of the decomposition occurs in the last 35°C. For the attrition-milled kyanite, the onset decomposition temperature decreases, the transformation temperature interval is reduced, and both the decomposition reaction and subsequent sintering are accelerated. A dense microstructure of fine equiaxed mullite grains in the 1 μm size range, evenly dispersed in a glassy matrix, is obtained by sintering the attrition-milled kyanites. These results are explained in terms of the energy accumulated during attrition milling, a reduction of the milled kyanite particle size, and the presence of a liquid phase during sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号