首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
主编絮语     
罗立强 《岩矿测试》2011,30(2):I-II
第一行过渡金属元素及痕量贵金属元素高度富集在硫化物矿物中,常形成具有工业意义的矿床,使得硫化物具有重大的经济价值。对天然硫化物矿物中的这些痕量金属元素丰度及其分布的研究,在矿石成因学、经济地质学、环境地球化学等领域具有重要的应用价值。激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)微区分析技术是一种强大的痕量元素分析工具,非常适合直接分析硫化物矿物中痕量元素的浓度及其空间分布。由于硫化物的激光剥蚀特性与硅酸盐及氧化物不同,分析校准用的标准物质又极度缺乏,严重阻碍了这一技术在硫化物矿物微区分析中的应用。本文评述了硫化物简介、硫化物中痕量金属元素分析的意义、LA-ICP-MS微区分析技术在硫化物矿物痕量元素分析中的优势及近年来的应用进展、硫化物分析中的干扰与校准、包含铂族元素及金的硫化物标准物质的研制进展及合成硫化物标准物质最有应用前景的方法。  相似文献   

2.
第一行过渡金属元素及痕量贵金属元素高度富集在硫化物矿物中,常形成具有工业意义的矿床,使得硫化物具有重大的经济价值。对天然硫化物矿物中的这些痕量金属元素丰度及其分布的研究,在矿石成因学、经济地质学、环境地球化学等领域具有重要的应用价值。激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)微区分析技术是一种强大的痕量元素分析工具,非常适合直接分析硫化物矿物中痕量元素的浓度及其空间分布。由于硫化物的激光剥蚀特性与硅酸盐及氧化物不同,分析校准用的标准物质又极度缺乏,严重阻碍了这一技术在硫化物矿物微区分析中的应用。本文评述了硫化物简介、硫化物中痕量金属元素分析的意义、LA-ICP-MS微区分析技术在硫化物矿物痕量元素分析中的优势及近年来的应用进展、硫化物分析中的干扰与校准、包含铂族元素及金的硫化物标准物质的研制进展及合成硫化物标准物质最有应用前景的方法。  相似文献   

3.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

4.
A new reference material, STDGL3, for the calibration of in situ analyses of sulfide minerals by LA-ICP-MS has been developed and characterised. It represents a lithium-borate-based glass containing a mixture of Zn- and Fe-sulfide concentrates doped with several chalcophile elements as well as Zr, Gd, Hf and Ta required for assessing common interferences on Ag, Au and Pt. STDGL3 has a wider range of elements and a better homogeneity compared with existing reference materials for LA-ICP-MS analysis of sulfides. Compositional variations for most elements are below 3% RSD, below 5% RSD for Ag, Au and Pt, and below 7% RSD for Se, when performing spot analyses with a 50 μm beam size. Its preparation recipe is reproducible allowing for multiple batches to be made. Use of STDGL3 significantly improves accuracy of sulfide mineral analysis by LA-ICP-MS when compared with use of other available reference materials. Performance of STDGL3 was evaluated using several different laser systems. No significant change was observed between 193 nm ArF excimer lasers with 5 and 20 ns pulse widths, but use of 213 and 248 nm lasers displays more systematic differences, especially when analysing galena. Correction coefficients are needed for some elements (Zn and Cd in particular) when analysing sulfide minerals using STDGL3 as a calibration reference material.  相似文献   

5.
6.
金属或半金属元素(Fe、Mo、As、Cu、Co、Ni、Zn、Pb等)、贵金属元素(Au、Ag)和铂族元素(PGE)、稀有分散元素(Re、Ga、In等)以高浓度富集或微量赋存于硫化物矿物中,常形成具有工业意义和经济价值的大型矿床,对研究矿床成因、经济地质、环境地球化学具有重要意义。因此,对硫化物组成的精确分析是了解上述方向的重要途径。硫化物矿物的主微(痕)量元素的快速、精确定量分析一直以来备受关注,本文就近几十年来对硫化物矿物的定量分析进展作了详细介绍,重点评述了电子探针(EPMA)、X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS和LA-ICPMS)和电感耦合等离子体发射光谱(ICP-AES)在硫化物矿物主微(痕)量分析中的应用。  相似文献   

7.
Single fluid inclusions in quartz from a Pb-Zn-Ag carbonate replacement deposit were selected for trace element determination by laser ablation ICP-MS. Spikes in element intensities were noted between first breached fluids versus subsequent analyses, suggesting that accurate element concentrations may not be determined in smaller fluid inclusions when only one analysis is obtained before the fluid is exhausted. Elemental concentrations in the fluid inclusions were determined by external standardisation using solutions sealed in microcapillary tubes. Standards and single natural inclusion analyses give repeatabilities (%RSD) of ˜ 20% for Rb and Sr. Rubidium and strontium concentrations range from 0.56-5.07 μg ml-1 and 1.12-27.4 μg ml-1, respectively, whereas Zn and Ag are below detection limits (< 10 ng ml-1). The results suggest that nearly all Zn and Ag are removed by the time hydrothermal fluids precipitate gangue minerals.  相似文献   

8.
For the trace element analysis of gold by laser ablation ICP-MS, external calibration samples of differing matrix composition have been used in previous studies. Data presented here suggest that even for calibration samples and unknowns with closely-matched matrices, discrepancies arise due to variations in the coupling behaviour of the laser with the sample at different power deliveries, and can lead to erroneous trace element determinations. Internal standardisation for gold is complicated because Au and Ag, the most common major elements, do not have minor isotopes that can be used as internal standards. This problem was overcome for natural gold samples by using an external calibration sample only for the major elements Au and Ag, then defocussing the ion path and using 107Ag in each sample as an internal standard against which μg g-1 levels of Te, Sb, Hg, Bi, and Cu were determined. The results suggest that trace elements can occupy lattice sites in gold rather than occurring only as micro-inclusions of other phases. The analytical approach taken here may be used in trace element analysis where adequate external calibration samples are not readily available.  相似文献   

9.
Trace elements and rare earth elements (REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry. The results indicate that V, Cu, Sn, Ga, Cd, In, and Se are concentrated in sphalerite, Sb, As, Ge, and Tl are concentrated in galena, and almost all trace elements in pyrite are low. The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites. The contents of Ge, Tl, In, and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites. It shows that REE concentrations are higher in pyrite than in sphalerite, and galena. In sphalerites, the REE concentration decreases from light-yellow sphalerites, brown sphalerites, to black sphalerites. The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites, respectively, indicating that the genesis of the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis. The relationship between LnGa and LnIn in sphalerite, and between LnBi and LnSb in galena, indicates that the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis. Based on the chondrite-normalized REE patterns, δEu is a negative anomaly (0.13–0.88), and δCe does not show obvious anomaly (0.88–1.31); all the samples have low total REE concentrations (<3 ppm) and a wide range of light rare earth element/high rare earth element ratios (1.12–12.35). These results indicate that the ore-forming fluids occur under a reducing environment. Comparison REE compositions and parameters of sphalerites, galenas, pyrites, ores, altered dolostone rocks, strata carbonates, and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems, that is, different chronostratigraphic units could make an important contribution to the ore-forming fluids. Combined with the tectonic setting and previous isotopic geochemistry evidence, we conclude that the ore-deposit genesis is hydrothermal, sedimentary reformed, with multisources characteristics of ore-forming fluids.  相似文献   

10.
INTRODUCTIONLaserablationinductivelycoupledplasmamassspectrome tryisanincreasinglydevelopedanalyticaltechniqueforsolidsampleanalysis.LA ICP MSoffersattractivecharacteristicsofhighsensitivity ,lowdetectionlimits,minimalsampleprepara tion ,lessoxidesinterfe…  相似文献   

11.
This contribution presents data for laser ablation multicollector ICP‐MS (LA‐MC‐ICP‐MS) analyses of NIST SRM 610 and 612 glasses with the express purpose of examining the Pb isotope homogeneity of these glasses at the ~ 100 μm spatial scale, relevant to in situ analysis. Investigation of homogeneity at these scales is important as these glasses are widely used as calibrators for in situ measurements of Pb isotope composition. Results showed that at the levels of analytical uncertainty obtained, there was no discernable heterogeneity in Pb isotope composition of NIST SRM 610 and also most probably for NIST SRM 612. Traverses across the ~ 1.5 mm glass wafers supplied by NIST, consisting of between 75 and 133 individual measurements, showed no compositional outliers at the two standard deviation level beyond those expected from population statistics. Overall, the measured Pb isotope ratios from individual traverses across NIST SRM 610 and 612 wafers closely approximate single normally‐distributed populations, with standard deviations similar to the average internal uncertainty for individual measurement blocks. Further, Pb isotope ratios do not correlate with Tl/Pb ratios measured during the analysis, suggesting that regions of volatile element depletion (marked by low Tl/Pb) in these glasses are not associated with changes in Pb isotope composition. For NIST SRM 610 there also appeared to be no variation in Pb isotope composition related to incomplete mixing of glass base and trace element spike during manufacture. For NIST SRM 612 there was some dispersion of measured ratios, including some in a direction parallel to the expected mixing line for base‐spike mixing. However, there was no significant correlation parallel to the mixing line. At this time this cannot be unequivocally demonstrated to result from glass heterogeneity, but it is suggested that NIST SRM 610 be preferred for standardising in situ Pb isotope measurements. Data from this study also showed significantly better accuracy and somewhat better precision for ratios corrected for mass bias by external normalisation to Pb isotope ratios measured in bracketing calibrators compared to mass bias corrected via internal normalisation to measured 205Tl/203Tl, although the Tl isotopic composition of both glasses appears to be homogeneous.  相似文献   

12.
The direct analysis of nickel sulfide fire assay buttons by UV laser ablation ICP-MS was used to determine the platinum-group elements and gold in the following reference materials: UMT-1, WPR-1, WMG-1, GPt-4, GPt-6 and CHR-Bkg. The instrument was calibrated with buttons prepared using quartz doped with the appropriate standard solutions. Analytical precision (RSD) was generally better than 10%, although occasional higher RSDs may infer local heterogeneities within nickel sulfide buttons. Good or excellent agreement was observed between analysed and reference material values except Rh in UMT-1 and WMG-1, which suffered an interference from copper. Detection limits calculated as 10 s quantitation limits were Au (1.7 ng g−1), Pd (3.3 ng g−1), Pt (8.3 ng g−1), Os (1.3 ng g−1), Rh (1 ng g−1), Ru (5 ng g−1) and Ir (0.7 ng g−1).  相似文献   

13.
UV Laser Ablation ICP-MS: Some Applications in the Earth Sciences   总被引:4,自引:0,他引:4  
This study reports a series of applications of UV laser ablation ICP-MS in the geological sciences. The advantages and disadvantages of the PQ "S" option and the use of nitrogen in the carrier gas are discussed. A general problem common to all ablation techniques is the calibration technique and experiments involving synthetic calibration samples are covered. Zircon geochemistry and geochronology by LA-ICP-MS are discussed and data are presented for REE, Hf and U for a standard zircon (91500) as well as a series of zircons from Zimbabwe. The potential of using Ce and Eu anomalies in petrologic studies is illustrated by zircons from a fractionated gabbroic-granite in the Urals. The potential of the LA-ICP-MS method to utilise standard X-ray fluorescence glass discs is demonstrated as a useful semi-quantitative tool in determining REE patterns. LA-ICP-MS is a powerful tool in the analysis of the platinum group elements (and Re) and some examples are given in the successful application of the technique to partitioning in iron meteorites.  相似文献   

14.
新疆小热泉子铜(锌)矿床位于大南湖晚古生代岛弧带内,矿体主要赋存于一套凝灰质火山碎屑沉积岩中,矿石类型主要为块状黄铜矿矿石、闪锌矿矿石和脉状硫化物矿石。硫化物的显微结构研究表明,黄铁矿主要发生脆型变形,形成碎裂结构、细粒化结构、充填交代结构、"布丁"结构以及变斑晶结构,黄铜矿和闪锌矿发生塑性变形,黄铜矿表现为"S型"面理结构以及在闪锌矿中呈团斑状结构,电子探针结果表明黄铜矿发生明显的活化迁移富集作用。硫化物的稀土微量元素研究表明,闪锌矿中Mn、Ga、As等元素含量很低,Ga/In<<1,Ge/In多数小于1,174相似文献   

15.
Data are reported for rare earth elements (REE) in three geological glass reference materials (BIR-1G, BHVO-2G and BCR-2G) using a UV (266 nm) laser ablation ICP-MS system and the classical (HF-HClO4) acid decomposition method, followed by conventional nebulisation ICP-MS. External calibration of laser ablation analyses was performed using NIST SRM reference materials with internal standardisation using 29Si and 44Ca. Replicate analyses of reference basaltic glasses yielded an analytical precision of 1-5% (RSD) for all the elements by solution ICP-MS and 1-8% (RSD) by laser ablation ICP-MS. The relative differences between the REE concentrations measured by solution and laser ablation ICP-MS compared with the reference values were generally less than 11 % for most elements. The largest deviations occurred for La determined by solution ICP-MS in BIR-1G. The results of both solution and laser ablation ICP-MS agreed well, generally better than 7%, with the exception of La, Pr and Sm in BIR-1G. The measured REE laser ablation data for BIR-1G, BHVO-2G and BCR-2G agreed with the previously published data on these basaltic reference glasses, within a range of 0-10% for most elements. No significant influences were observed for the predicted spectral interferences on some REE isotopes in the analysis of basaltic glasses.  相似文献   

16.
New analytical results are reported for rarely determined elements Be, B, Ge, As, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, W, Re, Ir, Pt, Au, Tl and Bi in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate glasses and the NIST SRM 610‐614 synthetic soda‐lime glasses using 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. The method used involved external calibration against GOR132‐G for Ir and NIST SRM 610 for other elements, internal standardisation using Ca, and ablation with a crater diameter of 160 μm and a pulsed laser repetition rate of 10 Hz. Small amounts of nitrogen (5 ml min?1) were added to the central channel gas of the plasma to improve the limits of detection for most of these elements by a factor of 1.2–2.5 and to reduce the oxide interference level to 0.02% (ThO+/Th+). Under these conditions, the LODs for most of these rarely determined elements were within the range 0.1 to 10 ng g?1. The operating conditions that were required to minimise ICP‐induced fractionation (U+/Th+≈ 1) in the mode without nitrogen were accompanied by a 50–60% reduction in sensitivity for elements such as Ca, Au and Pt. In contrast, ICP‐induced fractionation could be minimised (U+/Th+≈ 1) with no loss of analyte sensitivity in the nitrogen mode. Interferences of CuAr+, ZnAr+, Cd+, Pb2+ and Sn+ on Pd+, Rh+, Cd+ and In+ were corrected. Oxide interferences were not considered due to their lower production rate. Analytical precision, as given by one relative standard deviation (% RSD) was less than 15% for most of the elements present at concentrations greater than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with a correlation coefficient of ?0.76. This trend indicates that possible chemical heterogeneities for most of these elements are smaller than the analytical uncertainty. Our results for Be, B, Ge, Sb and W are generally in good agreement with their reference values. In contrast, other elements in many of the reference glasses have only information values, upper limits or even no values, which restrict any detailed evaluation of the accuracy of the determined values. However, concentrations from multiple isotopes of one element analysed in this study showed excellent agreement, which guarantee the quality of our data to a certain extent.  相似文献   

17.
Fifty elements in NIST SRM 614 and 616 glass reference materials were determined by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). The values determined for NIST SRM 614 agreed well with the NIST-certified and information values (mean relative difference ± 3.6%), except for B, Sc and Sb. The values determined for NIST SRM 616 agreed with the NIST-certified and information values within a mean relative difference of ± 1.5%, except for B, Sc and Ga. In addition, at an 80 μm sampling scale, NIST SRM 614 and 616 glass discs were homogeneous for trace elements within the observed precisions of 5 and 15% (mean), respectively. Detection limits were in the range 0.01 - 0.3 μg g−1 for elements of lower mass numbers (amu < 80) and 1 - 10 ng g−1 for heavy elements (amu > 80). Detection at the sub ng g−1 level is possible for most of the heavy elements by using an ablation pit size larger than 10 0 μm.  相似文献   

18.
Preliminary results are given from an excimer 157 nm laser ablation multiple-collector inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS), used for the isotopic measurements of solid materials. Elements of geological interest with different volatilities such as Pb and U (e.g. zircon geochronology) and Cu and Zn (as examples of geochemical/biochemical tracers) were analysed. The range of ablation rates of 20-150 nm s-1 enabled us to ablate the sample down to a depth of 45 μm for a 50 μm diameter pit. The Cu and Zn isotopic measurements gave values that were very stable with, on average, a 0.01 % standard error, comparable with that achieved in liquid mode measurements.  相似文献   

19.
应立娟  林彬  王立强  李超  王阔 《岩矿测试》2015,34(3):366-374
西藏甲玛超大型铜多金属矿床的钼资源量大于100万吨,辉钼矿是最主要的钼矿物。本文应用电感耦合等离子体质谱法(ICP-MS)分析了不同期次辉钼矿,研究其稀土元素和微量元素的地球化学特征,以指示成矿流体的来源与性质,探讨其成矿机制。结果表明,辉钼矿的稀土元素总量(39.34~168.1μg/g)与斑岩、矽卡岩的稀土元素总量相似,富集轻稀土,且从早到晚总量增加,指示流体源自于岩浆。辉钼矿具有明显的Eu、Ce负异常和Sm正异常,其中Eu负异常指示流体的还原性质;Cu、Pb、Zn等成矿元素含量较高,指示流体中成矿元素的富集。  相似文献   

20.
A new technique for the in situ analysis of Re, Au, Pd, Pt and Rh in natural basalt glass by laser ablation (LA)-ICP-MS is described. The method involves external calibration against NIST SRM 612/613 or 614/615 glass certified reference materials, internal standardisation using Ca, and ablation with a 200 μm wide beam spot and a pulsed laser repetition rate of 50 Hz. Under these conditions, sensitivities for Re, Au, Pd, Pt and Rh analyte ions are ˜ 5000 to 100,000 cps/μg g-1. This is sufficient to make measurements precise to ˜ 10% at the 2-10 μg g-1 level, which is well within the range of concentrations expected in many basalts. For LA-ICP-MS calibration and a demonstration of the accuracy of the technique, concentrations of Re, Au, Pd, Pt and Rh in the NIST SRM 610/611 (˜ 1 to 50 μg g-1), 612/613 (˜ 1 to 7 μg g-1), 614/615 (˜ 0.2 to 2 μg g-1) and 616/617 (˜ 0.004 to 2 μg g-1) glasses were determined by solution-nebulisation (SN)-ICP-MS. Using the 612/613 or 614/615 glasses as calibration standards, LA-ICP-MS measurements of these elements in the other NIST glasses fell within ˜ 15% of those determined by SN-ICP-MS. Replicate LA-ICP-MS analyses of the 612/613 and 614/615 glasses indicate that, apart from certain anomalous domains, the glasses are homogeneous for Re, Au, Pd, Pt and Rh to better than 3.5%. Two LA-ICP-MS analyses of natural, island-arc basalt glasses exhibit large fractionations of Re, Au and Pd relative to Pt and Rh, compared to the relative abundances in the primitive mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号