首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The half-lives of functional messenger RNAs were determined by a method employing the drugs actinomycin D and daunomycin for the inhibition of mRNA synthesis; the activity of extracted mRNAs was determined by an in vitro translation assay. Several controls indicated that this method yielded reliable values for mRNA half-lives; in particular, the declining rate of protein synthesis in the presence of the drugs is due predominantly to the decay of translatable mRNA. This method was used to determine the half-lives of two specific mRNAs—encoding actin and a protein of MW 51,000—as well as that of total cytoplasmic mRNA activity during growth and at several times in differentiation. The half-lives of at least these two mRNAs were shown to be distinctly different from that of the total mRNA population—about 4 hr. However, no significant change in any of these half-lives was observed between growing and developing cells. Therefore wholesale alterations in the degradation rates of total and at least specific messages do not appear to play a role in the regulation of gene expression during Dictyostelium development.  相似文献   

2.
T H Alton  H F Lodish 《Cell》1977,12(1):301-310
As analyzed by two-dimensional polyacrylamide gel electrophoresis, no new proteins are synthesized during the first 60 min of differentiation of Dictyostelium discoideum. The major change observed is the cessation of synthesis of five polypeptides and the reduction in the relative rates of synthesis of several more. We show here that this specific inhibition of protein synthesis is under translational control; the mRNAs for these proteins persevere in the cell in a translatable form for as long as 4 hr of differentiation, but these proteins are not synthesized by the cells after 2 min of development. As determined by analysis of the subcellular distribution of ribosomes and messenger RNA, there is a precipitous drop in the overall rate of polypeptide chain initiation during the first 5 min of differentiation. To interrelate and explain these phenomena, we show that a recent kinetic analysis of mRNA translation can explain how a reduction in the activity of a component of the initiation machinery required for translation of all mRNAs, such as an initiation factor, could result in a reduction in the overall rate of chain initiation and also a preferential inhibition of translation of certain mRNAs.  相似文献   

3.
The pattern of proteins synthesized at different stages of differentiation of the slime mold Dictyostelium discoideum was studied by two-dimensional polyacrylamide gel electrophoresis. Of the approximately 400 proteins detected during growth and/or development, synthesis of most continued throughout differentiation. Approximately 100 proteins show changes in their relative rates of synthesis. During the transition from growth to interphase, the major change observed is reduction in the relative rate of synthesis of about 8 proteins. Few further changes are noticeable until the stage of late cell aggregation, when production of about 40 new proteins begins and synthesis of about 10 is reduced considerably. Thereafter, there are few changes in the pattern of protein synthesis. Major changes in the relative rates of synthesis of a number of proteins are found during culmination, but few culmination-specific proteins are observed. In an attempt to understand the molecular basis for these changes, mRNA was isolated from different stages of differentiation and translated in an improved wheat germ cell-free system; the products were resolved on two-dimensional gels. The ratio of total translatable mRNA to total cellular RNA is constant throughout growth and differentiation. Messenger RNAs for many, but not all, developmentally regulated proteins can be identified by translation in cell-free systems. Actin is the major protein synthesized by vegetative cells and by early differentiating cells. The threefold increase in the relative rate of synthesis of actin during the first 2 hr of differentiation and the decrease which occurs thereafter can be accounted for by parallel changes in the amount of translatable actin mRNA. Most of the changes in the pattern of protein synthesis which occur during the late aggregation and culmination stages can also be accounted for by parallel increases or decreases in the amounts of translatable mRNAs encoding these proteins. It is concluded that mRNAs do not appear in a translatable form before synthesis of the homologous protein begins, and that regulation of protein synthesis during development is primarily at the levels of production or destruction of mRNA.  相似文献   

4.
Heat shock response of Dictyostelium   总被引:24,自引:0,他引:24  
In response to a shift from 22 to 30°C the relative rate of synthesis of a small number of proteins is dramatically increased in Dictyostelium discoideum. The cells neither grow nor develop at this temperature but die slowly with a half-life of 18 hr. The major protein synthesized in response to a heat shock to 30°C in either growing cells or developing cells has an apparent molecular weight of 70,000 (70K). An increase in the relative rate of synthesis of 70K can be seen as early as 20 min following heat shock. Synthesis of 70K remains high for 4 hr at 30°C and then decreases. Similar kinetics of 70K synthesis occur during recovery at 22°C following a 1-hr heat shock. RNA synthesis during the first half-hour of heat shock is essential for the high rate of 70K measured 2 hr later. By isoelectric focusing the 70K protein can be separated into two spots, one of which overlaps one of the major heat shock proteins of Drosophila melanogaster. The relative rate of synthesis of several other proteins (82K, 60K, 43K) increases less dramatically in Dictyostelium during heat shock at 30°C. A heat shock to 34°C results in rapid synthesis of these proteins but not of 70K. The relative rates of synthesis of most other proteins made at 22°C decreases, most notably that of actin. Synthesis of heat shock proteins at 30°C does not significantly affect viability at 30°C but dramatically prolongs the period of time the cells can survive at 34°C. Thus, 30°C appears to be a stasis condition for Dictyostelium which elicits a response essential for protection from lethal temperatures. The similarity of the heat shock response in Dictyostelium to that in Drosophila and vertebrate cells suggests that certain aspects of the response may be universal in eukaryotes.  相似文献   

5.
A genetic melanotic neoplasm of Drosophila melanogaster   总被引:6,自引:0,他引:6  
The construction of mature fruiting bodies occurs during the culmination stage of development of Dictyostelium discoideum. These contain at least two different cell types, spores and stalks, which originate from an initially homogenous population of vegetative amoebas. As an attempt to identify proteins whose synthesis is regulated in each cell type during differentiation, we have analyzed the two-dimensional profiles of proteins synthesized by spore and stalk cells during the culmination stage. We have identified 5 major polypeptides which are specifically synthesized by spore cells during culmination and 9 which are only made by stalk cells. Furthermore, synthesis of about 20 polypeptides appears to be enriched either in the spore or in the stalk cells. We also show that synthesis of actin, a major protein synthesized during Dictyostelium development, is specifically inhibited in the spore cells during culmination. Synthesis of most of the cell type-specific proteins initiates at 19–20 hr, during culmination. Moreover, the proteins whose synthesis is induced after formation of tight aggregates, the time when the major change in gene expression occurs, are not specifically incorporated into spores or stalk cells, and appear to be synthesized by both cell types. We conclude that a new class of genes is expressed during the culmination stage in Dictyostelium, giving rise to specific patterns of protein synthesis in spore and stalk cells.  相似文献   

6.
7.
We show that removal of yeast extract and trypticase from growth medium is sufficient for induction of several key events which occur during the early stages of Dictyostelium differentiation: run-off of polysomes, the earliest known change in macromolecular metabolism; appearance of the cell surface cAMP receptor; and aggregation itself. Starvation of glucose has little effect on these parameters. These results are consistent with those of other investigators who showed that starvation only of amino acids will induce other activities associated with cAMP-mediated cell signaling and cell-cell adhesion. We show, in contrast, that other factors are involved in the increase in the relative rates of synthesis of three polypeptides very early in differentiation: actin, and two proteins (“45-min” proteins) which are synthesized only during the period of 45–90 min. The induction of synthesis of these three proteins and presumably, of their mRNAs, is not the result of starvation for glucose or amino acids but is the result of plating cells at high density. The increases in the synthesis of these proteins are dependent on the density at which cells are plated and do not occur at a density 75-fold lower than the density used in standard experiments. Cells growing at high density or near stationary phase do not show the induction of increased synthesis of actin or the “45-min” proteins. These experiments suggest that these early developmental changes may be dependent on a threshold level of a diffusible factor excreted early in development.  相似文献   

8.
Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.  相似文献   

9.
The half-lives of the M13 gene 5 and gene 8 messages were determined by measuring the decay in the rate of synthesis of the gene 5 and gene 8 proteins after inhibition of new RNA chain initiations with rifampin. The gene 5 and gene 8 messages decay with half-lives of approximately 2.5 and 5 min, respectively. We found no evidence of a functional M13 message with a half-life as long as that reported for hybridizable mRNA.  相似文献   

10.
Muscle cell cultures from Drosophila melanogaster were obtained by plating dissociated gastrula stage embryo cells on protamine-treated culture dishes. They myogenic cells in these cultures fuse to form multinucleated pulsating cells by 15 hr after plating. An analysis of protein synthesis during myogenesis in these cultures, as measured by the incorporation of 35S-methionine and analyzed by two-dimensional polyacrylamide gel electrophoresis, showed profound changes in the pattern of protein synthesis. This analysis enabled us to identify three distinct classes of proteins. Class A proteins, the most abundant, are synthesized continuously throughout myogenesis, class B proteins are those proteins whose synthesis is initiated during myogenesis and continued throughout development; class C proteins are those synthesized at specific times during development. In addition, three forms of actin have been identified in these cultures. Actin I, which shows increased synthesis concomitant with the myogenic development in these cultures, is apparently a muscle-specific form of actin. Actin II, the predominant "cytoplasmic" form of actin in the nonmuscle Schneider cell line 2, is also the major form in the gastrula cultures before differentiation begins. Synthesis of this actin continues in the myogenic cultures. Actin III is a rapidly turning over form of actin which does not accumulate in either the Schneider cells or the myogenic cultures.  相似文献   

11.
12.
Macromolecular syntheses during the quick-change act of Naegleria   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
Analysis of actin synthesis in early sea urchin development   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
Stress mRNA metabolism in canavanine-treated chicken embryo cells.   总被引:7,自引:3,他引:4       下载免费PDF全文
Four major chicken stress mRNAs with apparent molecular weights of 1.2 X 10(6), 0.88 X 10(6), 0.59 X 10(6), and 0.25 X 10(6) to 0.28 X 10(6) were separated on acidic agarose-urea gels. Using cell-free translation, the coding assignments of these mRNAs were determined to be stress proteins with apparent molecular weights of 88,000, 71,000, 35,000, and 23,000. Despite high levels of translational activity in vivo and in vitro, no newly synthesized mRNA for the 23-kilodalton stress protein was detected on gels under conditions which readily allowed detection of other stress mRNAs, suggesting activation of a stored or incompletely processed mRNA. Cloned Drosophila heat shock genes were used to identify and measure changes in cellular levels of the two largest stress mRNAs. Synthesis of these mRNAs increased rapidly during the first hour of canavanine treatment and continued at a high rate for at least 7 h, with the mRNAs attaining new steady-state levels by ca. 3 h. Both of these inducible stress mRNAs had very short half-lives compared with other animal cell mRNAs. Using an approach-to-steady-state analysis, the half-lives were calculated to be 89 min for the mRNA encoding the 88-kilodalton stress protein and 46 min for the mRNA encoding the 71-kilodalton stress protein. Chicken 18S and 28S rRNA synthesis was inhibited, and actin mRNA levels measured with cloned cDNA encoding chicken beta-actin slowly declined in canavanine-treated cells.  相似文献   

17.
The suggestion that compensation for overabundant mRNA of the genes for Saccharomyces cerevisiae ribosomal protein (r-protein) L3, L29, or rp59 occurs by translation repression has been reinvestigated. First, analysis of the distribution of these three mRNAs in polysome profiles revealed no differences between normal and mRNA-overproducing strains, indicating that initiation of r-protein translation is not repressed under conditions of mRNA overaccumulation. Second, experiments involving radioactive pulse-labeling of proteins were done by using a modified method of data collection and analysis that allows quantitation and correction for fast decay during the pulse. These measurements revealed that the synthesis rate of the three r-proteins is increased when their mRNA levels are elevated and that their decay rate is also high, with half-lives ranging from a fraction of a minute to more than 10 min. We conclude that accumulation of excess r-protein mRNA has no effect on translation rate; rapid decay of protein during the course of the labeling period can account for the apparent discrepancy between mRNA levels and protein synthesis rates. Yeast r-proteins, when produced in excess, are among the most rapidly degraded proteins so far described.  相似文献   

18.
19.
Cloned cDNA probes were used to measure the accumulation of myosin heavy chain, myosin light chain 2, and actin mRNA during differentiation of rat skeletal muscle cell cultures. This was compared with the changes in the rate of synthesis of the corresponding proteins. Accumulation of those mRNA sequences was detectable a few hours before the onset of the phase of cell fusion; however, the main increase in hybridizable RNA occurred during the phase of rapid cell fusion. A close correlation was found between the amounts of mRNAs coding for these proteins and the rate of synthesis of the proteins. The results suggest that the activation of stored mRNA is not a major mechanism for controlling the time at which these proteins are synthesized.  相似文献   

20.
We investigated a correlation between development of thermotolerance and expression, synthesis, or phosphorylation of HSP28 family in CHO plateau phase cells. After heating at 45.5 degrees C for 10 min, thermotolerance developed rapidly and reached its maximum 12-18 hr after heat shock. This acquired thermal resistance was maintained for 72 hr and then gradually decayed. In parallel, the levels of three 28 kDa heat shock proteins, HSP28a along with its two phosphorylated isoforms (HSP28b,c), increased and reached their maximum 24-48 hr after heat shock. The levels of these polypeptides, except HSP28c, remained elevated for 72 hr and then decreased. The level of HSP28 mRNA increased rapidly and reached its maximum 12 hr after heat shock. However, unlike thermotolerance and the levels of HSP28 family proteins, the level of HSP28 mRNA decreased rapidly within 72 hr. These results demonstrate a correlation between the amount of intracellular HSP28 family proteins and development and decay of thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号