首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
王瑛  李相一  柯坚 《化工学报》2005,56(4):705-710
空气自然对流的小型燃料电池不同于强制对流下工作的燃料电池,阴极反应气来源于空气的自然对流.由于这一自然对流的特性,电池内部的质量、能量、动量以及电化学反应方程存在着极强的耦合关系.从水、热管理的角度,考虑了电池内部的流动、电化学反应、热和质量的传输,以及它们之间的相互关系,建立了空气自然对流下的质子交换膜燃料电池的二维数学模型. 针对不同的阴极流道宽度和间隔宽度,对温度、流动速率、分压以及电化学性能参数等进行了计算,分析了这些参数之间的相互影响.有助于理解电池内部现象之间的相互关系,对燃料电池双极板和电池结构设计有指导意义.  相似文献   

2.
胡桂林  陈松  樊建人  岑可法 《化工学报》2005,56(7):1305-1310
为更好地模拟质子交换膜燃料电池内的复杂传递过程,发展了一个三维稳态的、非等温的气液两相流模型,模型综合考虑电池内的流动、传热、传质等过程,以及水的相变过程对电池内传质和温度场的影响.本模型的特性是可以详细地模拟和估计电极电化学动力学,考虑电子在扩散层和催化层,以及质子在膜相中的传递规律.通过数值计算得到了详细的组分浓度、电位和温度等在电池内的空间分布.比较了估算的极化性能与文献中的实验数据,结果表明两者较好地相符合.  相似文献   

3.
胡桂林  樊建人  岑可法 《化工学报》2006,57(11):2693-2698
为描述质子交换膜燃料电池的动态过程,发展了一个基于计算流体动力学的非稳态、非等温的三维两相流数学模型.应用模型对一蛇形流道结构的质子交换膜燃料电池单体进行了数值计算,得到了电池启动过程中电池阴极侧膜表面温度和电流密度等特征参数的动态过程变化曲线.最后,分析了阴极入口速度、湿度和电池电压阶跃变化后电池特性的动态响应特性.结果表明:电池的启动时间和阶跃响应时间均为秒的数量级,与大多数模型模拟的结果相一致.  相似文献   

4.
魏琳  廖梓豪  蒋方明 《化工学报》2019,70(z2):146-154
质子交换膜燃料电池(PEMFC)具有高能量比、环境友好、工作温度低等优点,可用作未来新能源汽车的能量来源,具有很好的发展前景。然而零下温度启动时,电池内水结冰堵塞通道,严重影响电池启动性能及寿命。提出了PEMFC冷启动三维多物理场数值模型,考虑了冷却剂流动与传热的影响,对冷启动过程组分浓度、电势、温度、含冰量等参数进行了可视化分析。数值模拟结果与试验吻合良好,表明模型可用于预测电池冷启动性能并用于机理研究。  相似文献   

5.
PEM燃料电池中质子交换膜内水和质子的迁移特性   总被引:1,自引:1,他引:0  
孙红  郭烈锦  刘洪潭  张广升 《化工学报》2005,56(6):1081-1085
质子交换膜的水含量及水和质子的迁移对PEM燃料电池的性能具有重要影响.提出了一个稳态两相流数学模型,用以研究质子交换膜中的水迁移和水含量及其与质子传递阻力的关系.模型耦合了连续方程、动量守恒方程、物料守恒方程和水在质子交换膜中的传递方程.通过与实验数据对比,验证了模型的有效性.分析模拟结果发现,当电流密度相同时,沿气体流动方向,质子交换膜中水的电渗拉力系数、反扩散系数和水力渗透系数逐步增大,而水的净迁移系数逐步减小;同时,质子交换膜的含水量增加,质子传递阻力逐步下降;增大电池的操作压力,电渗拉力系数、反扩散系数、水力渗透系数、水净迁移系数和质子膜的含水量增加,而质子传递阻力下降,使燃料电池的性能得到了提高.  相似文献   

6.
熊子昂  舒婷  田新龙  党岱  廖世军 《化工进展》2014,33(8):2012-2017
空气自呼吸质子交换膜燃料电池具有系统体积小、能量密度高、能量转化效率高和清洁无污染、无需复杂的空气供给及增湿系统等优点,是极具商业前景的新一代中小功率便携式电源,其相关研究为燃料电池领域的热点研究课题。本文综述了近年来此类电池在结构、机理、组成元件、性能等方面的研究进展,认为改善阴极催化层孔隙率和疏水性等能显著加快氧气传输和水移除,提高氧气活化能力;气体扩散层的组成、结构和厚度亦影响其气体透过性和水移除效果;合适的结构设计和材料选取能调节池体温度,强化空气对流;膜电极免增湿技术的应用可以维持电池在低湿度下较高质子传导率和系统稳定性,这是空气自呼吸质子交换膜燃料电池实现商业化的重要研究方向。  相似文献   

7.
大功率PEMFC空气供给系统建模与实验验证   总被引:1,自引:0,他引:1       下载免费PDF全文
马智文  曾怡达  李伦 《化工学报》2016,67(5):2109-2116
近年来,质子交换膜燃料电池(PEMFC)作为车载燃料电池的主要动力源受到广泛关注。空气压缩机为电堆提供系统所需的氧气和阴极压力,是质子交换膜燃料电池系统中必不可少的一部分,其工作性能对燃料电池稳态和动态工作性能有很大的影响。基于实验室已有150 kW质子交换膜燃料电池系统,对离心式空压机的工作特性进行了研究,建立了包含离心式空气压缩机的空气供给系统应用模型。通过实验验证,仿真模型能够准确地反映离心式空压机与空气系统的特性,同时能真实反映包含离心式空压机的大功率质子交换膜燃料电池空气系统的稳态控制效果,以及不同控制策略下的动态响应效果。该模型对研究大功率质子交换膜燃料电池空气供给系统以及相应的控制策略提供理论支持,仿真模型与实验结果为下一步控制策略优化提供基础与参考。  相似文献   

8.
近年来,质子交换膜燃料电池(PEMFC)作为车载燃料电池的主要动力源受到广泛关注。空气压缩机为电堆提供系统所需的氧气和阴极压力,是质子交换膜燃料电池系统中必不可少的一部分,其工作性能对燃料电池稳态和动态工作性能有很大的影响。基于实验室已有150 k W质子交换膜燃料电池系统,对离心式空压机的工作特性进行了研究,建立了包含离心式空气压缩机的空气供给系统应用模型。通过实验验证,仿真模型能够准确地反映离心式空压机与空气系统的特性,同时能真实反映包含离心式空压机的大功率质子交换膜燃料电池空气系统的稳态控制效果,以及不同控制策略下的动态响应效果。该模型对研究大功率质子交换膜燃料电池空气供给系统以及相应的控制策略提供理论支持,仿真模型与实验结果为下一步控制策略优化提供基础与参考。  相似文献   

9.
阴极多孔介质中液态水的含量对PEM燃料电池阴极中的传质及其性能具有极其重要的影响。提出了一个二维、两相、稳态数学模型,研究PEM燃料电池阴极中两相水的传递及其对电池性能的影响。模型耦合了连续方程、动量方程和组分守恒方程,并将质子膜中的净水迁移通量作为边界条件之一来处理。通过实验的方法和数值模拟的方法,研究了电池操作压力和温度对电池性能的影响,同时验证了模型的有效性。模拟发现:提高操作压力和升高阴极加湿温度使电池阴极催化剂层(CTL)和扩散层(GDL)界面上的液态水含量大幅提高;升高阳极加湿温度,电池阴极CTL和GDL界面上的液态水含量变化不明显;而升高燃料电池的操作温度,阴极CTL和GDL界面上液态水的含量降低。  相似文献   

10.
乙烷质子交换膜燃料电池的研究   总被引:1,自引:0,他引:1  
研究了以乙烷作为燃料、全氟磺酸高分子膜(Nafion膜)作为质子交换膜、Pt或Pt-Ru作为电极催化剂主要组分、并通过掺杂Nafion膜作为电极内的离子导体构成的燃料电池电化学性能.研究了两种电极催化剂:Pt与Pt-Ru复合催化剂的制备及构成的单电池在不同温度及运行时间下的电化学性能.温度增加,电池性能变好;运行时间增加,电池性能下降,在相同的温度与运行时间下,Pt-Ru复合催化剂构成的电池比Pt催化剂构成的电池极化小.通过分析电极反应产物,探讨了乙烷电极及电池的反应机理.结构为C2H6,( Pt-Ru+膜材料复合阳极)/Nafion膜/(Pt+膜材料复合阴极),O2 的质子交换膜燃料电池,在150℃时,电池的最大输出电流和功率密度分别高达70 mA·cm-2和22 mW·cm-2.  相似文献   

11.
质子交换膜燃料电池稳态自增湿性能分析   总被引:1,自引:1,他引:0       下载免费PDF全文
李英  周勤文  张香平 《化工学报》2014,65(5):1893-1899
增湿及水管理系统使得燃料电池系统结构复杂,质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)自增湿操作在实用化方面逐渐引起研究者的兴趣。提高PEMFC自增湿性能的关键在于对生成水的有效管理,保证质子交换膜的良好水合。实践证实采用自增湿膜电极组件是一个有效途径。本文建立催化层中增加保水层的水传递平衡模型预测膜中水的分布,考察自增湿操作的可行性和稳定性。数值分析表明:只有低于50 mm(如Nafion112)的薄膜能满足电池自增湿膜水合的要求。保证膜水合性能和电池操作稳定性的电池温度为60℃,操作压力为0.15 MPa,阴极气体过量系数可以增大到1.8。在上述操作条件下,电池自增湿性能与饱和增湿有可比性,与饱和增湿最佳条件有差距。因此PEMFC自增湿性能在综合考虑降低成本和费用,简化结构和操作时具有可行性,但不能替代增湿操作。  相似文献   

12.
1 INTRODUCTION Polymer electrolyte membrane fuel cell (PEMFC) is promising for its advantages of simple structure, relatively low operating temperature, high efficiency, convenient maintenance and rapid startup. PEMFCs can be used in many potential fields, especially as power sources for vehicles to replace normal combus- tion engine[1,2]. However, the availability of fuel cell vehicles is not quite close to us so far, although both concept design and demonstration have proved its feas…  相似文献   

13.
王红星  许莉  王宇新 《化工学报》2007,58(7):1699-1705
利用之前建立的数学模型(across-the-channel model)研究了流道设计对电池性能的影响。结果表明,对不同增湿条件的质子交换膜燃料电池(PEMFC),其流道设计策略应有所不同:在增湿较差或者不增湿的条件下,电池阴极流场板应当采用较宽的脊以获得较好的保湿效果;在增湿较好的条件下,则应当采用较窄的脊以增强阴极排水功能,从而提高电池性能。  相似文献   

14.
S. Tsushima  S. Hirai 《Fuel Cells》2009,9(5):506-517
Water management in polymer electrolyte membrane fuel cells (PEMFCs) is extremely important for the high performance and durable operation of fuel cells. Therefore, fundamental understanding of water transport involved in operating PEMFCs is necessary. This article presents a review of in situ magnetic resonance imaging (MRI) visualisation of water in operating PEMFCs, which is recognised as a powerful diagnostic tool for probing water behaviours, both in flow fields and in the membrane electrode assembly (MEA). The basic principles and hardware related to MRI visualisation are described with emphasis on the design, construction and material selection of a PEMFC for MRI experiments. The MRI results reported by several groups are outlined to illustrate the versatility and potential usefulness of in situ visualisation of water in operating PEMFCs using MRI.  相似文献   

15.
氧气和水是质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电化学反应中的主要成分,梯度磁场能够对二者的物理、化学性质产生影响。通过性能测试实验台,研究了阳极侧加载480mT梯度磁场后,被动式质子交换膜燃料电池(air-breathing proton exchange membrane fuel cell,AB-PEMFC)的性能变化。在此基础上,测试了不同电池温度和氢气流量下电池的性能变化。实验结果表明,在相同环境变量下,于阳极侧加载480mT梯度磁场能够提升AB-PEMFC的电效率。在不同电池温度下,加载480mT梯度磁场的电池效率更优;在不同的氢气流量下,阳极侧加载480mT梯度磁场,能为低流量时AB-PEMFC的电效率提供更明显的增益效果。因此,当AB-PEMFC在低温、低氢流量环境下工作时,在其阳极侧加载480mT梯度磁场能够更好地提升电池性能。实验结果可为AB-PEMFC的性能提升提供一定的参考价值。  相似文献   

16.
The performance and operation stability of proton exchange membrane fuel cells (PEMFCs) are closely related to the transportation of reactants and water management in the membrane electrode assembly (MEA) and flow field. In this paper, a new three-dimensional wave parallel flow field (WPFF) in cathode was designed and analyzed throughout simulation studies and an experimental method. The experimental results show that the performance of PEMFC with WPFF outperforms that of PEMFC with straight parallel flow field (SPFF). Specifically, the peak power density increased by 13.45% for the PEMFC with WPFF as opposed to PEMFC with SPFF. In addition, the flow field with area of 11.56 cm2 was formed by the assembly of transparent end plate used for cathode and the traditional graphite plate used for anode. To understand the mechanism of the novel flow field improving the performance of PEMFC, a model of PEMFC was proposed based on the geometry, operating conditions and MEA parameters. The thickness of gas diffusion layers (GDL), catalytic layers (CL) and proton exchange membrane were measured by scanning electron microscope. The simulation result shows that compared with SPFF, the WPFF based PEMFC promote the oxygen transfer from flow channel to the surface of CL through GDL, and it was beneficial to remove the liquid water in the flow channel and the MEA.  相似文献   

17.
K. Jiao  X. Li 《Fuel Cells》2010,10(3):351-362
High temperature proton exchange membrane fuel cells (HT‐PEMFCs) with phosphoric acid doped polybenzimidazole (PBI) membranes have gained tremendous attentions due to its attractive advantages over conventional PEMFCs such as faster electrochemical kinetics, simpler water management, higher carbon monoxide (CO) tolerance and easier cell cooling and waste heat recovery. In this study, a three‐dimensional non‐isothermal model is developed for HT‐PEMFCs with phosphoric acid doped PBI membranes. A good agreement is obtained by comparing the numerical results with the published experimental data. Numerical simulations have been carried out to investigate the effects of operating temperature, phosphoric acid doping level of the PBI membrane, inlet relative humidity (RH), stoichiometry ratios of the feed gases, operating pressure and air/oxygen on the cell performance. Numerical results indicate that increasing both the operating temperature and phosphoric acid doping level are favourable for improving the cell performance. Humidifying the feed gases at room temperature has negligible improvement on the cell performance, and further humidification is needed for a meaningful performance enhancement. Pressurising the cell and using oxygen instead of air all have significant improvements on the cell performance, and increasing the stoichiometry ratios only helps prevent the concentration loss at high current densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号