首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
中枢模式发生器(CPG)在六足机器人的运动步态控制中起着至关重要的作用。为了研究六足机器人的运动控制方法,首先基于仿生学原理设计了六足机器人的机械结构,并在虚拟样机软件ADAMS中搭建其三维模型;其次选择Hopf振荡器作为CPG单元,并改进了振荡器模型;然后设计了六足机器人的CPG网络拓扑结构,包含单腿关节映射函数方案和腿间CPG环形耦合网络方案,并对其进行了改进;最后通过ADAMS和MATLAB联合仿真实验,验证了所设计六足机器人的运动稳定性和CPG控制方案的可行性与有效性。仿真结果表明,该方法能够满足六足机器人不同运动步态的控制需求,对六足机器人的运动控制具有一定的实际应用价值。  相似文献   

2.
乔贵方  韦中  张颖  万其  宋光明 《机器人》2019,41(6):779-787
为实现3维蛇形机器人多模式运动控制,提出了一种基于双层级中枢模式发生器(CPG)的运动控制方法.该双层级CPG网络包含节律层和模式层,节律层的CPG神经元用于控制3维蛇形机器人的俯仰关节组和偏转关节组的相位关系,模式层的CPG神经元用于控制3维蛇形机器人关节组内各个关节的相位差及关节轨迹.首先,利用Kuramoto振荡器对CPG神经元进行建模,并确定CPG网络的层级结构和耦合拓扑;然后,基于蛇形约束曲线计算3维蛇形机器人侧滚运动、侧移运动、滑行运动及转向运动4种典型运动步态的控制参数;最后,通过联合仿真和实验验证该双层级CPG网络的控制性能.由实验结果可知,3维蛇形机器人的侧滚运动、侧移运动、滑行运动以及转向运动的实际速度分别能够达到3.9 cm/s、9.0 cm/s、2.1 cm/s和10.8°/s.因此,该方法能够有效地、灵活地控制3维蛇形机器人的多模式运动.  相似文献   

3.
针对生物蛇不同步态的运动特点,提出了一种基于Hopf振荡器实现的蛇形机器人的中枢模式发生器(CPG)运动控制方法.首先,利用具有非线性极限环特性的耦合的Hopf振荡器构建出能够实现蜿蜒运动和侧向蜿蜒运动两种步态的链式网络模型.然后,根据动力学仿真软件建立机器人的虚拟样机,利用模型中振荡器的输出作为蛇形机器人分布式多冗余度关节的控制信号来驱动前进,成功实现了以上两种运动方式,并讨论了CPG的模型参数与机器人前进速度的关系.最后,在实物样机上的实验进一步验证了所提出的方法在实现蛇形机器人多种步态控制方面的有效性.  相似文献   

4.
动物运动指令的中枢模式发生器对机器人运动控制的启示   总被引:1,自引:0,他引:1  
动物运动指令的中枢模式发生器(central pattern generator, CPG)在动物的节律运动中发挥着重要的作用,对机器人的仿生控制方法研究具有借鉴意义.首先介绍了CPG的神经环路和控制机制,然后分析了组成CPG的非线性振荡器的典型数学模型,接着介绍了利用CPG进行机器人运动控制在国内外的发展现状,最后展望了其应用前景.  相似文献   

5.
针对多自由度仿人机器人的运动控制,从神经生理学和机器人学的角度研究了基于中 枢模式生成器(CPGs)的仿人运动控制策略.提出了一种将多目标遗传算法应用于(CPGs)参 数优化的方法.首先构造用于仿人机器人运动控制的(CPGs)的结构,其参数通过遗传算法按 相应的评价函数得到优化.  相似文献   

6.
中枢模式发生器(CPG)是微小神经网络,具有可学习性和分数阶特性,被广泛应用于机器人领域.本文建立了分数阶可学习CPG模型;以Rayleigh振荡器为核心,利用Hebbian算法和分数阶定义研究了分数阶可学习CPG模型;详细说明了分数阶可学习CPG模型的构建过程,利用正弦信号和复杂信号进行了模型验证,并将其应用于罗盘机...  相似文献   

7.
针对舵机驱动爬壁机器人的机构特点,提出一种用Labview实现舵机驱动爬壁机器人CPG神经网络运动控制的方法.首先,基于仿生运动控制的概念构建出舵机驱动爬壁机器人神经网络运动控制模型.然后,将机器人的平面自由运动分解成直线运动和转弯运动的组合,并结合CPG神经网络信号波形特点,完成机器人相应的实际运动控制信号的生成与输出.最后,通过机器人平面运动控制的实验研究,验证了所提控制方法的有效性.  相似文献   

8.
针对节律运动突变碰撞力大和柔顺性低的问题,改进基于Hopf振荡器的中枢模式发生器模型,提出一种节律柔顺行走控制方法。分析Hopf振荡器输出信号与关节运动之间的关系,整合膝关节变量,改变神经元之间的作用关系,实现对称步态和非对称步态行走;分析节律运动碰撞力突变对四足机器人行走产生的负面影响,提出基于碰撞力大小和四足机器人身体姿态的柔顺性评估方法;通过连续调整碰撞阶段大腿的摆动幅度,增大摆动周期,减小碰撞阶段的关节运动速度,形成机器人本体与地面之间的缓冲,实现节律柔顺行走。四足机器人慢走步态和对角小跑步态仿真实验验证了该控制方法的有效性。  相似文献   

9.
针对蛇形机器人采用的循环抑制CPG模型,为解决CPG控制模型中参数整定效率低、不稳定的问题,阐述基于CPG模型的蛇形搜救机器人控制系统总体方案的设计,提出一种基于遗传算法的CPG控制模型参数优化方法,实现链式CPG网络的节律输出。仿真实现蛇形搜救机器人各关节控制信号的有效输出,仿真结果表明,该方法具有高效、准确、稳定等优点,可有效应用于蛇形搜救机器人的步态控制。  相似文献   

10.
由于传统人工规划产生步态是比较僵硬,缓慢的,缺乏灵活的自组织能力,与真正生物步态存在很大差异;而生物能很好利用中枢模式发生器的自激行为产生有节律的协调运动从而适应多种复杂环境,但普通CPG控制策略又会使关节间出现抖动,影响步态的控制效果;文中提出了以生物中枢模式发生器模型为核心建立双足机器人控制系统,并对CPG的参数进行遗传算法的高效优化,提高了系统性能,消除了关节的抖动;通过MATLAB仿真验证基于GA参数优化的CPG控制机理的双足机器人节律运动控制方法是有效的,并得到了很好的控制效果。  相似文献   

11.
基于循环抑制CPG模型控制的蛇形机器人蜿蜒运动   总被引:3,自引:0,他引:3  
根据生物蛇和蛇形机器人的结构及运动特点,应用循环抑制CPG建模理论构建了蛇形机器人神经网络模型;利用蛇形机器人模型,仿真验证了CPG模型对蜿蜒运动控制的有效性;提出并仿真验证了实现有目的转弯控制的CPG参数调节方法。最后,给出了今后的研究方向。  相似文献   

12.
随着人类对自然的探索越来越深入,新型水下航行器的需求与日俱增,仿生机器人因其特殊的推进方式和高效的推进效率而受到越来越多的关注,而传统的仿生鱼类仅模拟了流线型外壳,少有提及仿生对象本身结构对于仿生性能的影响,本文提出了一种基于中央模式发生器(CPG)的类双髻鲨仿生机器人.以鱼类基本运动形态为基础,将鱼身抽象为关节连杆结构,建立了三关节四连杆的仿生机器鱼模型并进行了仿真计算.根据步态规律预估了其运动性能,随后通过实验验证了可行性.本仿生鱼旨在以简单的机械结构和较低的控制成本,实现对双髻鲨的最大限度模拟,得益于良好的仿生结构,中央模式发生器的引入,以及柔性硅胶材料在鱼身的应用,此机器人拥有体型小,控制简单,地形适应能力强,能量利用率高等特点,与传统水下推进器相比噪音更小,环境适应能力更强,在科研、农业等行业均具有广泛的应用前景,如野外勘测,水下救援,水域巡逻等.  相似文献   

13.
基于循环抑制CPG 模型控制的蛇形机器人三维运动   总被引:4,自引:1,他引:3  
具有三维运动能力和独特的节律运动方式,使生物蛇能在复杂的地形环境中生存. 大多数动物节律运动是由中央模式发生器(Central pattern generator, CPG) 控制的. 以此为理论依据, 首次以循环抑制建模机理构建蛇形机器人组合关节运动控制的CPG 模型. 证明该模型是节律输出型CPG 中微分方程维数最少的. 采用单向激励方式连接该类CPG 构建蛇形机器人三维运动神经网络控制体系,给出该CPG 网络产生振荡输出的必要条件. 应用蛇形机器人动力学模型仿真得到控制三维运动的CPG 神经网络参数,利用该CPG 网络的输出使\勘查者"成功实现三维运动. 该结果为建立未探明的生物蛇神经网络模型提供了一种全新的方法.  相似文献   

14.
为了克服传统中枢模式发生器(Central pattern generator, CPG)关节空间控制方法的复杂性和局限性, 本文基于自学习中枢模式发生器模型, 提出了一套在线调制和融合多传感器信息的仿人机器人环境自适应行走控制方法.算法难点在于如何在机器人的工作空间将自学习CPG用于工作空间轨迹生成, 并使CPG参数直接和步态模式相关联.本文提出了利用自学习CPG来学习和实时生成机器人质心轨迹和脚掌轨迹的方法, 在线调节机器人步长、抬腿高度和步行速度等关键参数.参考生物反射行为, 利用传感反馈信息激发CPG以产生具有环境适应性的工作空间轨迹, 提升行走质量. 控制系统的参数通过优化算法来进一步改善行走性能.相比于传统的CPG关节空间法, 本文所采用的自学习CPG工作空间法不仅极大简化了CPG网络结构而且提高了仿人机器人行走的适应性.最后, 通过仿人机器人坡面适应性行走的仿真和实验, 验证了所提出控制策略的可行性和有效性.  相似文献   

15.
能量作为最基本的物理量之一, 联系着蛇形机器人蜿蜒运动的各个方面. 能量耗散描述了环境交互作用, 能量转换对应着运动的动力学过程, 能量平衡反映了蜿蜒运动的协调性. 提出一种基于能量的蛇形机器人蜿蜒运动控制方法-被动蜿蜒. 通过输出关节力矩控制机器人蜿蜒运动, 由机器人的能量状态调整力矩的大小. 仿真结果显示了被动蜿蜒控制下机器人的构形、角度、力矩、能量状态和转弯特性, 并对控制力矩进行了递归分析. 基于Optotrak运动测量系统构建了被动蜿蜒控制的模拟/物理混合实验系统. 进行了移动实验和拖动实验, 前者改变环境的摩擦特性,后者改变机器人的负载. 仿真和实验验证了蛇形机器人被动蜿蜒控制的有效性和适应性.  相似文献   

16.
王坤东  颜国正 《机器人》2006,28(1):19-24
为进入人体腔道开展作业,开发了一种直径6mm的仿蚯蚓多关节蠕动微机器人样机.机器人使用十字万向节连接直线驱动器,在弯曲腔道中能自适应改变自身姿态.基于Preisach模型和偏转模型,提出了形状记忆合金偏转机构的前馈控制方案,头舱控制最大偏转误差为2.6°.基于新型蠕动原理,建立了牵引模型,给出了有效驱动的条件.对机器人的牵引力、运动速度、在不同摩擦系数介质表面上的运动能力、头舱姿态进行了试验.结果表明,机器人的爬坡能力依赖于机器人和运动表面间的摩擦系数,新型蠕动原理能提供较大的牵引力,合适的驱动频率下可以得到最大的运动速度.  相似文献   

17.
Rhythmic movements in biological systems are produced in part by central circuits called central pattern generators (CPGs). For example, locomotion in vertebrates derives from the spinal CPG with activity initiated by the brain and controlled by sensory feedback. Sensory feedback is traditionally viewed as controlling CPGs cycle by cycle, with the brain commanding movements on a top down basis. We present an alternative view which in sensory feedback alters the properties of the CPG on a fast as well as a slow time scale. The CPG, in turn, provides feedforward filtering of the sensory feedback. This bidirectional interaction is widespread across animals, suggesting it is a common feature of motor systems, and, therefore, might offer a new way to view sensorimotor interactions in all systems including robotic systems. Bidirectional interactions are also apparent between the cerebral cortex and the CPG. The motor cortex doesn't simply command muscle contractions, but rather operates with the CPG to produce adaptively structured movements. To facilitate these adaptive interactions, the motor cortex receives feedback from the CPG that creates a temporal activity pattern mirroring the spinal motor output during locomotion. Thus, the activity of the motor cortical cells is shaped by the spinal pattern generator as they drive motor commands. These common features of CPG structure and function are suggested as offering a new perspective for building robotic systems. CPGs offer a potential for adaptive control, especially when combined with the principles of sensorimotor integration described here.  相似文献   

18.
Recently, many experiments and analyses with biped robots have been carried out. Steady walking of a biped robot implies a stable limit cycle in the state space of the robot. In the design of a locomotion control system, there are primarily three problems associated with achieving such a stable limit cycle: the design of the motion of each limb, interlimb coordination, and posture control. In addition to these problems, when environmental conditions change or disturbances are added to the robot, there is the added problem of obtaining robust walking against them. In this paper we attempt to solve these problems and propose a locomotion control system for a biped robot to achieve robust walking by the robot using nonlinear oscillators, each of which has a stable limit cycle. The nominal trajectories of each limb's joints are designed by the phases of the oscillators, and the interlimb coordination is designed by the phase relation between the oscillators. The phases of the oscillators are reset and the nominal trajectories are modified using sensory feedbacks that depend on the posture and motion of the robot to achieve stable and robust walking. We verify the effectiveness of the proposed locomotion control system, analyzing the dynamic properties of the walking motion by numerical simulations and hardware experiments. Shinya Aoi received the B.E. and M.E. degrees from the Department of Aeronautics and Astronautics, Kyoto University, Kyoto, Japan in 2001 and 2003, respectively. He is a Ph.D. candidate in the Department of Aeronautics and Astronautics, Kyoto University. Since 2003, he has been a research fellow of the Japan Society for the Promotion of Science (JSPS). His research interests include dynamics and control of robotic systems, especially legged robots. He is a member of IEEE, SICE, and RSJ. Kazuo Tsuchiya received the B.S., M.S., and Ph.D. degrees in engineering from Kyoto University, Kyoto, Japan in 1966, 1968, and 1975, respectively. From 1968 to 1990, he was a research member of Central Research Laboratory in Mitsubishi Electric Corporation, Amagasaki, Japan. From 1990 to 1995, he was a professor at the Department of Computer Controlled Machinery, Osaka University, Osaka, Japan. Since 1995, he has been a professor at the Department of Aeronautics and Astronautics, Kyoto University. His fields of research include dynamic analysis, guidance, and control of space vehicles, and nonlinear system theory for distributed autonomous systems. He is currently the principal investigator of “Research and Education on Complex Functional Mechanical Systems” under the 21st Century Center of Excellence Program (COE program of the Ministry of Education, Culture, Sports, Science and Technology, Japan).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号