首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Murine T helper cell clones are classified into two distinct subsets, T helper 1 (Th1) and T helper 2 (Th2), on the basis of cytokine secretion patterns. Th1 clones produce interleukin-2 (IL-2), tumor necrosis factor-beta (TNF-beta) and interferon-gamma (IFN-gamma), while Th2 clones produce IL-4, IL-5, IL-6 and IL-10. These subsets differentially promote delayed-type hypersensitivity or antibody responses, respectively. The nuclear factor NF-AT is induced in Th1 clones stimulated through the T cell receptor-CD3 complex, and is required for IL-2 gene induction. The NF-AT complex consists of two components: NF-ATp, which pre-exists in the cytosol and whose appearance in the nucleus is induced by an increase of intracellular calcium, and a nuclear AP-1 component whose induction is dependent upon activation of protein kinase C (PKC). Here we report that the induction of the Th2-specific IL-4 gene in an activated Th2 clone involves an NF-AT complex that consists only of NF-ATp, and not the AP-1 component. On the basis of binding experiments we show that this 'AP-1-less' NF-AT complex is specific for the IL-4 promoter and does not reflect the inability of activated Th2 cells to induce the AP-1 component. We propose that NF-ATp is a common regulatory factor for both Th1 and Th2 cytokine genes, and that the involvement of PKC-dependent factors, such as AP-1, may help determine Th1-/Th2-specific patterns of gene expression.  相似文献   

3.
4.
Glucocorticoids (GC) have long been used as the most effective agents for the treatment of allergic diseases accompanied by eosinophilia such as chronic asthma and atopic dermatitis. The development of chronic eosinophilic inflammation is dependent on interleukin-5 (IL-5), a selective eosinophil-activating factor, produced by helper T cells. To delineate the regulatory mechanisms of human IL-5 synthesis, we established allergen-specific CD4+ T-cell clones from asthmatic patients. GC efficiently suppressed IL-5 synthesis of T-cell clones activated via either T-cell receptor (TCR) or IL-2 receptor (IL-2R). Induction of IL-5 mRNA upon TCR and IL-2R stimulation was totally inhibited by dexamethasone. Human IL-5 promoter/enhancer-luciferase gene construct transfected to T-cell clones was transcribed on either TCR or IL-2R stimulation and was clearly downregulated by dexamethasone, indicating that the approximately 500-bp human IL-5 gene segment located 5' upstream of the coding region contains activation-inducible enhancer elements responsible for the regulation by GC. Electrophoretic mobility shift assay analysis suggested that AP-1 and NF-kappaB are among the possible targets of GC actions on TCR-stimulated T cells. NF-AT and NF-kappaB were not significantly induced by IL-2 stimulation. Our results showing that GC suppressed IL-5 production by human CD4+ T cells activated by two distinct stimuli, TCR and IL-2R stimulation, underscore the efficacy of GC in the treatment of allergic diseases via suppression of T-cell IL-5 synthesis.  相似文献   

5.
6.
The present study demonstrates 1alpha,25-dehydroxyvitamin D3 (1alpha-25-(OH)2D3) synergism toward transforming growth factor (TGF)-beta1-induced activation protein-1 (AP-1) activity in mouse osteoblastic MC3T3-E1 cells via the nuclear receptor of the vitamin. 1alpha-25-(OH)2D3 synergistically stimulated TGF-beta1-induced expression of the c-jun gene in the cells but not that of the c-fos gene. We actually showed by a gel mobility shift assay 1alpha-25-(OH)2D3 synergism of TGF-beta1-induced AP-1 binding to the 12-(O-tetradecanoylphorbol-13-acetate response element (TRE). 1alpha-25-(OH)2D3 markedly stimulated the transient activity of TGF-beta1-induced AP-1 in the cells transfected with a TRE-chloramphenicol acetyltransferase (CAT) reporter gene. Also, a synergistic increase in TGF-beta1-induced CAT activity was observed in the cells cotransfected with an expression vector encoding vitamin D3 receptor (VDR) and the reporter gene. However, the synergistic CAT activity was inhibited by pretreatment with VDR antisense oligonucleotides. In addition, in a Northern blot assay, we observed 1alpha-25-(OH)2D3 synergism of TGF-beta1-induced expression of the c-jun gene in the cells transfected with the VDR expression vector and also found that the synergistic action was clearly blocked by VDR antisense oligonucleotide pretreatment. The present study strongly suggests a novel positive regulation by 1alpha-25-(OH)2D3 of TGF-beta1-induced AP-1 activity in osteoblasts via "genomic action."  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
A previous study reported that intercellular adhesion molecule-1 (ICAM-1) expression by human vascular endothelial cells (HUVEC) is augmented by intracellular signal transmission mainly through the protein kinase C (PKC) system stimulated by TXA2 receptors. In the present study, we show that a TXA2 receptor agonist, U46619, augments the expression of not only ICAM-1, but also vascular cell adhesion molecule-1 (VCAM-1) or endothelial leucocyte adhesion molecule-1 (ELAM-1) in HUVEC both at protein and mRNA levels. Pretreatment with SQ29,548 (a TXA2 receptor antagonist) or PKC inhibitors greatly diminished the extent of U46619-induced mRNA accumulation and surface expression of the adhesion molecules. An inhibitor of nuclear factor kappaB (NF-kappaB) activation, PDTC, diminishes U46619-induced VCAM-1 mRNA accumulation. NAC, which inhibits NF-kappaB and activation protein 1 (AP-1) binding activity, inhibits the expression of ICAM-1 or ELAM-1 at protein and mRNA levels. These findings suggest that ICAM-1 or ELAM-1 expression of HUVEC stimulated via TXA2 receptors is augmented by induction of NF-kappaB and AP-1 binding activity through the PKC system, and that VCAM-1 expression is augmented by induction of NF-kappaB binding activity.  相似文献   

19.
Treatment of hepatocytes with transforming growth factor beta1 (TGF-beta1) induces growth arrest, which is followed by extensive cell death by apoptosis. Previously, we found that TGF-beta1 down-modulates nuclear factor (NF)-kappaB/Rel activity in murine B cell lymphomas, inducing apoptosis. Furthermore, p65 (RelA)-deficient mice died during gestation due to apoptosis of liver cells. Here we have explored the effects of TGF-beta1 on hepatocytes, using two untransformed murine hepatocyte cell lines, AML-12 and NMH, which constitutively express classical NF-kappaB. TGF-beta1 treatment caused increased NF-kappaB binding that was followed by a dramatic decrease in NF-kappaB levels that preceded apoptosis. Ectopic c-Rel expression ablated apoptosis induced by TGF-beta1. The down-regulation in NF-kappaB activity correlated with elevated IkappaB-alpha expression due to hypophosphorylation and increased IkappaB-alpha protein stability. Thus, NF-kappaB factor expression acts directly to promote liver cell survival. Furthermore, these findings characterize a novel signaling pathway for TGF-beta1 in epithelial cells involving down-regulation of NF-kappaB/Rel factors activity through posttranslational modification of IkappaB-alpha protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号