首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biomass & bioenergy》2006,30(3):267-272
The reaction kinetics of acid-catalyzed transesterification of waste frying oil in excess methanol to form fatty acid methyl esters (FAME), for possible use as biodiesel, was studied. Rate of mixing, feed composition (molar ratio oil:methanol:acid) and temperature were independent variables. There was no significant difference in the yield of FAME when the rate of mixing was in the turbulent range 100 to 600 rpm. The oil:methanol:acid molar ratios and the temperature were the most significant factors affecting the yield of FAME. At 70 °C with oil:methanol:acid molar ratios of 1:245:3.8, and at 80 °C with oil:methanol:acid molar ratios in the range 1:74:1.9–1:245:3.8, the transesterification was essentially a pseudo-first-order reaction as a result of the large excess of methanol which drove the reaction to completion (99±1% at 4 h). In the presence of the large excess of methanol, free fatty acids present in the waste oil were very rapidly converted to methyl esters in the first few minutes under the above conditions. Little or no monoglycerides were detected during the course of the reaction, and diglycerides present in the initial waste oil were rapidly converted to FAME.  相似文献   

2.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

3.
Biodiesel has become more attractive recently because of its environmental benefits and the fact that it is made from renewable resources. Transesterification of vegetable oils with short-chain alcohol has long been a preferred method for producing biodiesel fuel. A new reactor was developed to produce fatty acid methyl esters (FAME) by blowing bubbles of superheated methanol vapor continuously into vegetable oil without using any catalysts. A kinetic study on the non-catalytic transesterification of palm oil was made in a reactor without stirring at atmospheric pressure. The effects of reaction temperatures (523, 543, and 563 K) on the rate constant, conversion, yield of methyl esters (ME) and composition of the reaction product under semi-batch mode operation are investigated. The activation energy and the frequency factor values of the transesterification reaction obtained in this experiment are 31 kJ/mol and 4.2, respectively. The optimum reaction temperature which gives the highest ME content (95.17% w/w) in the reaction product is 523 K, while the rate constant of the total system increased with reaction temperature.  相似文献   

4.
《Biomass & bioenergy》2006,30(1):76-81
The Jojoba oil-wax is extracted from the seeds of the Jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in some parts of the world. The main uses of Jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops.This paper summarizes a process to convert the Jojoba oil-wax to biodiesel by transesterification with methanol, catalysed with sodium methoxide (1 wt% of the oil). The transesterification reaction has been carried out in an autoclave at 60 °C, with a molar ratio methanol/oil 7.5:1, and vigorous stirring (600 rpm), reaching a quantitative conversion of the oil after 4 h. The separation of the fatty acid methyl esters (the fraction rich in FAME, 79% FAME mixture; 21% fatty alcohols; 51% of methyl cis-11-eicosenoate) from the fatty alcohols rich fraction (72% fatty alcohols; 28% FAME mixture; 26% of cis-11-eicosen-1-ol, 36% of cis-13-docosen-1-ol) has been accomplished in a single crystallization step at low temperature (−18 °C) from low boiling point petroleum ether.The fraction rich in FAME has a density (at 15 °C), a kinematic viscosity (at 40 °C), a cold filter plugging point and a high calorific value in the range of the European standard for biodiesel (EN 14214).  相似文献   

5.
Biodiesel are gaining increased public and scientific attention as an alternative to petroleum diesel fuel, driven by factors such as oil price spikes, energy security and environmental concerns. In this study, low grade wastewater sludge originated from wastewater treatment unit of vegetable oil factory as a viable alternative lipid source for biodiesel production was evaluated. The lipid mass fraction of the dry and ash-free sludge was 12.44 ± 0.87%, which mainly comprised of C16–C18 fatty acids. The in-situ transesterification process under subcritical water and methanol conditions was applied as a green pathway to convert lipids into fatty acid methyl esters (FAMEs). The reaction parameters investigated were temperatures (155–215 °C), pressures (5.5–6.5 MPa) and methanol to lipid mass ratios (1:1, 5:1 and 9:1). The highest FAME yield of 92.67 ± 3.23% was obtained at 215 °C, 6.5 MPa and methanol to lipid mass ratio of 5:1. Statistical analysis based on response surface methodology in 3-factor-3-level central composite designed experiments and analysis of variance were applied to examine the relation between input parameters and the response and to locate the optimum condition. Results showed that 98% of the variability in the response could be adequately explained by the second-order polynomial model. The optimum FAME yield (90.37%) was obtained at 215 °C, 6.5 MPa and methanol to lipid mass ratio of 5.12:1. Experimental validation (N = 3) demonstrated satisfactory agreement between the observed and predicted values with an error of at most 3.3%.  相似文献   

6.
The solid base catalyst KF/Ca–Al hydrotalcite was obtained from Ca–Al layered double hydroxides and successfully used in the transesterification of methanol with palm oil to produce biodiesel. With the load of KF, the activity of Ca–Al mixed-oxides had been improved much. For the mass ratio 80 wt.%(KF·6H2O to Ca–Al mixed-oxides) catalyst, under the optimal condition: 338 K, catalyst amount 5%(wt./wt. oil) and methanol/oil molar ratio 12:1, after 5 h reaction, the fatty acid methyl esters yield could reach 97.98%; for the mass ratio 100 wt.%(KF·6H2O to Ca–Al mixed-oxides) ones, under the same reaction condition, only needed 3 h to get the FAME yield of 99.74%, and even only reacted 1 h, the FAME yield could obtain 97.14%.  相似文献   

7.
The transesterification of waste cooking oil (WCO) with methanol to produce fatty acid methyl esters (FAMEs) in the presence of barium-modified montmorillonite K10 (BMK10) catalyst was investigated in a batch reactor. The influence of the reaction parameters on the yield of FAME was investigated. The highest value of 83.38% was obtained with 3.5 wt% catalyst loading at 150 °C with a methanol: oil molar ratio of 12:1 during a reaction time of 5 h. BMK10 is a promising low-cost catalyst for the transesterification of WCO to produce FAME.  相似文献   

8.
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 °C and 700 °C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60–65 °C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production.  相似文献   

9.
Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg−1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg−1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided.  相似文献   

10.
In this study, a strong acidic‐type cation exchange resin was used in the transesterification of corn oil to fatty acid methyl esters (FAME). The gel‐type cation exchange resin (Purolite‐PD206) was used in H+ and Na+ forms to utilize ion‐exchange resin as effective heterogeneous catalyst in the production of biodiesel. Effect of ionic forms of ion exchange resin on free fatty acid (FFA) conversion and composition was investigated by using different amounts of ion exchange resin (12, 16, and 20 wt%), various mole ratios of methanol to oil (1:6, 1:12, and 1:18 mol/mol), reaction temperatures (63, 65, and 67°C), and reaction time (24, 36, and 48 h) during transesterification reaction. The highest FFA conversions of 73.5% and 79.45% were obtained at conditions of 20 wt% of catalyst, 65°C of reaction temperature, 18:1 as methanol to oil ratio, and 48 h of reaction time for H+ and Na+ forms of ion exchange resin, respectively. These results were obtained from regression equations established by using analysis of variance (ANOVA) model according to the experimental results of selected parameters. Gas chromatography analysis revealed that FAME is mainly composed of C16:0 (palmitic), C18:1 (oleic), and C18:2 (linoleic) acids of methyl ester.  相似文献   

11.
Methyl and ethyl esters as biodiesel fuels were prepared from linseed oil with transesterification reaction in non-catalytic supercritical fluids conditions. Biodiesel fuel is a renewable substitute fuel for petroleum diesel fuel made from vegetable or animal fats. Biodiesel fuel has better properties than that of petroleum diesel fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. The purpose of the transesterification process is to lower the viscosity of the oil. The viscosity values of linseed oil methyl and ethyl esters highly decreases after transesterification process. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2 s?1, whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2 s?1. Compared with no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The transesterification of linseed oil in supercritical fluids such as methanol and ethanol has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

12.
13.
Cesium modified sodium zirconate (Cs-Na2ZrO3) was prepared by ionic exchange from sodium zirconate (Na2ZrO3), which was synthesized via a solid state reaction. Both ceramics, i.e., pristine Na2ZrO3 and the Cs-Na2ZrO3, were used as basic heterogeneous catalysts in biodiesel production. Soybean and Jatropha oils were used as triglyceride sources for transesterification reactions. Parameters, such as catalyst concentration (between 0.5 and 3 wt%), reaction time, different methanol/vegetable oil molar ratios, and temperature of the reaction, were evaluated. The cesium cation influence was evaluated from the basic transesterification reactivity. The results showed that the introduction of cesium significantly modified the catalytic activity in biodiesel production. Cs enhanced the reaction kinetics in obtaining biodiesel and reduced the reaction time in comparison with pristine Na2ZrO3. The results showed that Cs-Na2ZrO3 as a basic heterogeneous catalyst exhibited the best fatty acid methyl esters (FAME) conversion for soybean oil (98.8%) at 1 wt%, 30:1 methanol/oil ratio, 65 °C, and 15 min. The best conditions for Jatropha oil (90.8%) were 3 wt%, 15:1 methanol/oil ratio, 65 °C, and 1 h. The impregnation of Na2ZrO3 with cesium represents a very exciting alternative heterogeneous base catalyst for biodiesel production.  相似文献   

14.
The aim of this work was to optimize the production of fatty acid methyl ester (FAME, biodiesel) from wet Nannchloropsis gaditana microalgal biomass by direct enzymatic transesterification. This was done in order to avoid the high cost associated with the prior steps of drying and oil extraction. Saponifiable lipids (SLs) from microalgal biomass were transformed to FAME using the lipase Novozyme 435 (N435) from Candida antarctica as the catalyst, and finally the FAME were extracted with hexane. t-Butanol was used as the reaction medium so as to decrease lipase deactivation and increase mass transfer velocity. A FAME conversion of 99.5% was achieved using wet microalgal biomass homogenized at 140 MPa to enhance cell disruption, a N435:oil mass ratio of 0.32, methanol added in 3 stages to achieve a total of 4.6 cm3 g−1 of oil and 7.1 cm3 g−1 oil of added t-butanol, with a reaction time of 56 h. The FAME conversion decreased to 57% after catalyzing three reactions with the same lipase batch. This work shows the influence of the polar lipids contained in the microalgal biomass both on the reaction velocity and on lipase activity.  相似文献   

15.
Surfactant-coated lipase was used as a catalyst in preparing fatty acid methyl ester (FAME) from Chinese tallow kernel oil from Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) small. FAME transesterification was analyzed using response surface methodology to find out the effect of the process variables on the esterification rate and to establish prediction models. Reaction temperature and time were found to be the main factors affecting the esterification rate with the presence of surfactant-coated lipase. Developed prediction models satisfactorily described the esterification rate as a function of reaction temperature, time, dosage of surfactant-coated lipase, ratio of methanol to oil, and water content. The FAME mainly contained fatty acid esters of C16:0, C18:0, C18:1, C18:2, and C18:3, determined by a gas chromatograph. The optimal esterification rate was 93.86%. The optimal conditions for the above esterification ratio were found to be a reaction time of 9.2 h, a reaction temperature of 49 °C, dosage of surfactant-coated lipase of 18.5%, a ratio of methanol to oil of 3:1, and water content of 15.6%. Thus, by using the central composite design, it is possible to determine accurate values of the transesterification parameters where maximum production of FAME occurs using the surfactant-coated lipase as a transesterification catalyst.  相似文献   

16.
Limited solubility of alcohols in vegetable oils hinders transesterification reaction process. Phase transfer catalysis can be of great advantage to enhance the reaction rates. Addition of cetyltrimethylammonium bromide as a phase transfer catalyst on in situ transesterification of Jatropha curcas L. with alkaline ethanol was investigated. Use of cetyltrimethylammonium bromide increased the yield of fatty acid ethyl esters. Optimum operating conditions were experimentally established. Yield of fatty acid ethyl esters increased from 89.2 wt% to 99.5 wt% with reduced requirement of ethanol by 16.7 v%, sodium hydroxide catalyst by 33.3 wt%, at a lower temperature of 30 °C and reduced mixing speed in shorter reaction time. The quality of fatty acid ethyl esters fuel conforms to the standards of ASTM D6751 and EN-14214.  相似文献   

17.
Biofuel (e.g. biodiesel) has attracted increasing attention worldwide as blending component or direct replacement for fossil fuel in fuel energized engines. The substitution of petroleum-based diesel with biodiesel has already attained commercial value in many of the developed countries around the world. However, the use of biodiesel has not expanded in developing countries mostly due to the high production cost which is associated with the expensive high-quality virgin oil feedstocks. This research focuses on producing of biodiesel from low cost feedstocks such as used cooking oil (UCO) and animal fat (AF) via alkaline catalyzed transesterification process investigating the effects of process parameters, for example (i) molar ratio of feedstock to methanol (ii) catalyst concentration (iii) reaction temperature and (iv) reaction period on the biodiesel yield. The biodiesel was successfully produced via transesterification process from low cost feedstocks. It was also observed that the process parameters directly influenced the biodiesel yield. The optimum parameters for maximum biodiesel yields were found to be methanol/oil molar ratio of 6:1, catalyst concentration of 1.25 wt% of oil, reaction temperature of 65 °C, reaction period of 2 h and stirring speed of 150 rpm. The maximum biodiesel yields at the optimum conditions were 87.4%, 89% and 88.3% for beef fat, chicken fat and UCO, respectively. The results demonstrate high potential of producing economically viable biodiesel from low cost feedstocks with proper optimization of the process parameters.  相似文献   

18.
Evaluation of Radish (Raphanus sativus) seed oil (RSO) as a non-edible feedstock for biodiesel production was the main target of the present study. Extraction by solvent disclosed that radish seeds contains 33.50 wt.% of oil. Therefore, biodiesel production from it could be beneficial. Optimized base-catalyzed transesterification of RSO with methanol, ethanol and mixed methanol/ethanol was performed, to produce fatty acid methyl esters, fatty acid ethyl esters and mixed fatty acid methyl ethyl esters, respectively. The optimal yields of the methyl esters, ethyl esters and mixed methyl ethyl esters, were 95.55wt.%, 90.66 wt.% and 93.33 wt.%, respectively when the optimal reaction conditions were attained. Fuel properties of the parent oil were positively changed as consequence of transesterification reaction such that they fulfilled the standard limits as prescribed by ASTM D6751. Moreover, fuel properties of (biodiesels + petro diesel) blends conformed ASTM D7467-17 standards indicating their suitability as a fuel for diesel engines. Biodiesels form RSO were analyzed by thin layer chromatography and FTIR spectroscopy, and both techniques conformed its conversion into its corresponding alkyl esters.  相似文献   

19.
This work reports the production of fatty acid ethyl esters (FAEE) from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process using different reactor configurations. Experiments were performed in a microtube reactor with experimental simulation of two reactors operated in series and a reactor with recycle, both configurations at a constant temperature of 573 K, pressure of 20 MPa and oil to ethanol mass ratio of 1:1. Results show that the configurations studied with intermediate separation of glycerol afford higher conversions of vegetable oil to its fatty acid ethyl ester derivatives when compared to the one-step reaction, with relatively low decomposition of fatty acids (<3.0 wt%).  相似文献   

20.
Camelina oil is a low-cost feedstock for biodiesel production that has received a great deal of attention in recent years. This paper describes an optimization study on the production of biodiesel from camelina seed oil using alkaline transesterification. The optimization was based on sixteen well-planned orthogonal experiments (OA16 matrix). Four main process conditions in the transesterification reaction for obtaining the maximum biodiesel production yield (i.e. methanol quantity, reaction time, reaction temperature and catalyst concentration) were investigated. It was found that the order of significant factors for biodiesel production is catalyst concentration > reaction time > reaction temperature > methanol to oil ratio. Based on the results of the range analysis and analysis of variance (ANOVA), the maximum biodiesel yield was found at a molar ratio of methanol to oil of 8:1, a reaction time of 70 min, a reaction temperature of 50 °C, and a catalyst concentration of 1 wt.%. The product and FAME yields of biodiesel under optimal conditions reached 95.8% and 98.4%, respectively. The properties of the optimized biodiesel, including density, kinematic viscosity, acid value, etc., were determined and compared with those produced from other oil feedstocks. The optimized biodiesel from camelina oil meets the relevant ASTM D6571 and EN 14214 biodiesel standards and can be used as a qualified fuel for diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号