首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The inhalation of Chenopodium album (C. album) pollen has been reported as an important cause of allergic respiratory symptoms. The aim of this study was to produce the recombinant profilin of C. album (rChe a 2) pollen and to investigate its cross-reactivity with other plant-derived profilins based on potential conformational epitopes and IgE reactivity analysis. Che a 2-coding sequence was cloned, expressed, and purified using one step metal affinity chromatography to recover high-purity target protein. We assessed cross-reactivity and predicted IgE potential epitopes among rChe a 2 and other plant-derived profilins. Immunodetection and inhibition assays using sixteen individual sera from C. album allergic patients demonstrated that purified rChe a 2 could be the same as that in the crude extract. The results of inhibition assays among rChe a 2 and other plant-derived profilins were in accordance with those of the homology of predicted conserved conformational regions. In this study, amino acid sequence homology analysis showed that a high degree of IgE cross-reactivity among plant-derived profilins may depend on predicted potential IgE epitopes.  相似文献   

2.
Two EF-hand calcium-binding allergens (polcalcins) occur in the pollen of a wide variety of unrelated plants as highly cross-reactive allergenic molecules. We report the expression, purification, immunological characterization, and the 1.75-A crystal structure of recombinant Che a 3 (rChe a 3), the polcalcin from the weed Chenopodium album. The three-dimensional structure of rChe a 3 resembles an alpha-helical fold that is essentially identical with that of the two EF-hand allergens from birch pollen, Bet v 4, and timothy grass pollen, Phl p 7. The extensive cross-reactivity between Che a 3 and Phl p 7 is demonstrated by competition experiments with IgE Abs from allergic patients as well as specific Ab probes. Amino acid residues that are conserved for the two EF-hand allergen family were identified in multiple sequence alignments of polcalcins from 15 different plants. Next, the three-dimensional structures of rChe a 3, rPhl p 7, and rBet v 4 were used to identify conserved amino acids with high surface exposition to visualize surface patches as potential targets for the polyclonal IgE Ab response of allergic patients. The essentially identical three-dimensional structures of rChe a 3, rPhl p 7, and rBet v 4 explain the extensive cross-reactivity of allergic patients IgE Abs with two EF-hand allergens from unrelated plants. In addition, analyzing the three-dimensional structures of cross-reactive Ags for conserved and surface exposed amino acids may be a first approach to mapping the conformational epitopes on disease-related Ags that are recognized by polyclonal patient Abs.  相似文献   

3.
Chenopod pollen is one of the major sources of allergens in some locations in the US, southern Europe and desert countries, and pollen profilin (Che a 2) is a major allergen. Recombinant Che a 2 (rChe a 2) has been produced in Escherichia coil cells with a final yield of 25 mg/l of cell culture. The expressed protein was isolated and structurally characterized by means of mass spectrometry, Edman degradation and circular dichroism. rChe a 2 displayed a molecular mass of 13 959 Da, which agrees with that of the amino acid sequence. The N-terminal amino acid sequence indicated the correct processing of the recombinant product. The immunological analysis of rChe a 2 showed IgG- and IgE-binding capabilities equivalent to those of its natural counterpart, Che a 2, isolated from the pollen. Inhibition experiments showed high cross-reactivity degrees with different allergenic sources. Inhibition degrees of >95% and >80% were obtained for chenopod profilin and, respectively, latex and pollen extracts, whereas 10-95% of inhibition was observed for different plant-derived foods. Due to its close relation to other allergenic profilins from pollens, plant-derived foods and latex, rChe a 2 could be a useful tool in clinical trials to detect profilin-allergic patients and perhaps, depending on its clinical relevance, in specific immunotherapy of these hypersensitive individuals.  相似文献   

4.
Pollen proteins that are located in the cytoplasm or on the surface of the exine can function as allergens and evoke immune system responses in sensitive patients, leading to allergic rhinitis and asthma. In this research, the pollen allergenicity and ability to induce IgE response of the pollen of two plant species were studied in rats. Acroptilon repens is an herbaceous, invasive plant with entomophilous pollen, while Juglans regia which is a tree crop produces anemophilous pollen. Immunoblot analysis using sera of sensitised rats revealed IgE reactivity to three protein bands including the 70, 41 and 25.12 kDa bands present in the A. repens pollen extract, while only one single immunogenic band of 11 kDa was detected in J. regia pollen extract. Both pollen extracts increased the eosinophil content and caused some clinical signs of allergy in treated rats. The results showed that both entomophilous and anemophilous pollen can be allergenic.  相似文献   

5.

Background

During production of sugar beet (Beta vulgaris) seeds in greenhouses, workers frequently develop allergic symptoms. The aim of this study was to identify and characterize possible allergens in sugar beet pollen.

Methods

Sera from individuals at a local sugar beet seed producing company, having positive SPT and specific IgE to sugar beet pollen extract, were used for immunoblotting. Proteins in sugar beet pollen extracts were separated by 1- and 2-dimensional electrophoresis, and IgE-reactive proteins analyzed by liquid chromatography tandem mass spectrometry.

Results

A 14 kDa protein was identified as an allergen, since IgE-binding was inhibited by the well-characterized allergen Che a 2, profilin, from the related species Chenopodium album. The presence of 17 kDa and 14 kDa protein homologues to both the allergens Che a 1 and Che a 2 were detected in an extract from sugar beet pollen, and partial amino acid sequences were determined, using inclusion lists for tandem mass spectrometry based on homologous sequences.

Conclusion

Two occupational allergens were identified in sugar beet pollen showing sequence similarity with Chenopodium allergens. Sequence data were obtained by mass spectrometry (70 and 25%, respectively for Beta v 1 and Beta v 2), and can be used for cloning and recombinant expression of the allergens. As for treatment of Chenopodium pollinosis, immunotherapy with sugar beet pollen extracts may be feasible.  相似文献   

6.
Approximately 50% of allergic patients are sensitized against grass pollen allergens. The characterization of specific immunoglobulin E (IgE) reactivity to allergen components in pollen-allergic patients is fundamental for clinical diagnosis and for immunotherapy. Complex allergen extracts are commonly used in diagnostic tests as well as in immunotherapy preparations, but their composition in single allergenic molecules is only partially known. Diagnostic tests which utilize recombinant or immuno-purified allergens have been made available in clinical practice. They allow to obtain specific profiles of IgE reactivity, but the panel of available molecules is far from complete. Here, we used a proteomic approach in order to detect grass allergens from a natural protein extract. A five-grass pollen extract used for diagnosis and immunotherapy was resolved by two dimensional gel electrophoresis (2-DE), and assayed with 9 sera from pollen-allergic patients whose sensitization profile was dissected by using IgE reactivity to recombinant allergens. 2-DE immunoreactivity patterns were matched with IgE reactivity to identify protein spots as candidate allergens. Identity was confirmed by mass spectrometry analysis. We identified 6 out of 8 expected clinically relevant allergens in the natural grass extract. Moreover, we identified different molecular isoforms of single allergens, thus obtaining a more detailed profile of IgE reactivity. Some discrepancies in protein isoform profile and sera immunoreactivity between recombinant and native allergen 5 from Phleum pratense were observed and a new putative allergen was described. The proteomic approach applied to the analysis of a natural allergen allows the comprehensive evaluation of the sensitization profile of allergic patients and the identification of new allergens.  相似文献   

7.
Background:Allergic disorders are common health problems worldwide with significant socio-economic impacts. The best diagnostic method using allergenic extract is the skin prick test. Regarding the effects of geo-climatic factors and allergenic extract source material quality, the aim of study was to determine the safety and efficacy of some in-house-developed allergenic extracts.Methods:Forty-five different allergenic extracts, including common regional pollen, foods, and dog and cat hair, as well as positive and negative extracts, were prepared from domestic sources using optimum extraction methods. All extracts passed stability and sterility testing, and sterile final products containing 50% glycerin in 10 and 20 w/v concentrations were used. Skin prick testing was performed on volunteers and immediate or late side effects were recorded. Results:In total, 56 students (mean age: 21.2±2.3y, M/F ratio: 1.07) participated in this study. For inhalant allergens, all extracts except dog hair extract caused positive responses. Salsola kali (Russian thistle) and Fraxinus velutina (ash tree) were the most common grass and tree pollen extracts, respectively. Of 18 different food extracts, five, including egg white, tomato, fig, melon, and green pepper caused skin reactivity in only one person. No participant reported any immediate or late side effects, including large local reaction or systemic response.Conclusion:The result of the current study confirmed the safety of all our in-house-developed allergenic extracts. Regarding efficacy, almost all inhalant and five food allergens caused positive skin responses.Key Words: Allergenic extract, In-house extract, Skin prick test  相似文献   

8.
Salsola kali pollen is a common cause of pollinosis during summer and early fall in desert and semi-desert regions. The aim of this study was the identification and characterization of Sal k 3, a new allergen from S. kali pollen. S. kali pollen extract was fractionated by SDS-PAGE and the allergenic profile was determined by IgE-immunoblotting using twelve S. kali allergic patients. Protein identification was carried out by the means of mass spectrometry. Using degenerated primers, two DNA fragments encoding N- and C-terminal domain of Sal k 3 were amplified by PCR, then cloned into the PTZ57R/T vector and sequenced. The open reading frame of Sal k 3 fragments were subcloned in the pET-32b(+) vector, expressed in E. coli, and purified by Ni2+ affinity chromatography. The IgE-binding capacity of rSal k 3 fragments was then studied by IgE-immunoblotting, inhibition assays, and skin prick tests. A 45-kDa allergen was identified as a fragment of the cobalamin-independent methionine synthase (MetE) by mass spectrometry and was detected in the sera of 8/12 (66.6%) of S. kali allergic patients. Moreover, inhibition assays demonstrated that the purified rSal k 3 fragments were similar to their counterparts in the crude extract. Sal k 3 represents a new allergen of S. kali pollen and seems to be an important allergenic compound in S. kali pollen.  相似文献   

9.
Fagales allergens belonging to the Bet v 1 family account responsible for the majority of spring pollinosis in the temperate climate zones in the Northern hemisphere. Among them, Fag s 1 from beech pollen is an important trigger of Fagales pollen associated allergic reactions. The protein shares high similarity with birch pollen Bet v 1, the best-characterized member of this allergen family. Of note, recent work on Bet v 1 and its homologues found in Fagales pollen demonstrated that not all allergenic members of this family have the capacity to induce allergic sensitization. Fag s 1 was shown to bind pre-existing IgE antibodies most likely primarily directed against other members of this multi-allergen family. Therefore, it is especially interesting to compare the structures of Bet v 1-like pollen allergens, which have the potential to induce allergic sensitization with allergens that are mainly cross-reactive. This in the end will help to identify allergy eliciting molecular pattern on Bet v 1-like allergens. In this work, we report the 1H, 15N and 13C NMR assignment of beech pollen Fag s 1 as well as the secondary structure information based on backbone chemical shifts.  相似文献   

10.
Sanjukta Parui 《Grana》2013,52(5):311-315
The pollen of Ricinus communis L., a potentially allergenic plant, was extracted to identify the allergenic determinants responsible for causing respiratory disorders. The soluble proteins were extracted and subjected to ammonium sulphate precipitation at 80% saturation and the total protein separated on 12% SDS-Polyacrylamide gel. In order to avoid the time consuming and expensive biochemical methods of column chromatography, each band was directly recovered from the gel by electroelution and the allergenic proteins identified directly by skin tests, without the necessity of Phadezym RAST or ELISA inhibition by reaction with serum IgE, the general procedure to identify the allergens. The fourth and the fifth band in the protein profile of R. communis pollen, RC4 (77 kD) and RC5 (66 kD) were the two major allergenic components. RC3 (91 kD) also induced a considerable amount of reactivity in sensitive patients. Contrary to the earlier reports of protein bands of R. communis ranging from 14 kD to 70 kD, 4 bands above 70 kD i.e. RC1 (123 kD), RC2 (97 kD), RC3 (91 kD) and RC4 (77 kD) are reported here for the first time. Immunodiffusion analysis with pooled sera of patients sensitive to the total extract also revealed similar results.  相似文献   

11.
Cycas circinalis L. or queen sago is a common ornamental gymnosperm in tropics and subtropics. The objectives of the study were (a) to observe the seasonal variation of queen sago pollen in the atmosphere of a rural and an industrial area of West Bengal, India, (b) to visualize its allergenic potential on local population, and (c) to identify and isolate the important IgE-binding protein component present in the pollen extract. A two-year aerobiological survey was performed with Burkard personal volumetric sampler, and Cycas pollen was found to be present in air during April–July. Among 172 respiratory allergic patients of study area, 25.58% showed skin reaction to Cycas pollen extract. The allergenicity of the pollen extract was confirmed by in vivo (skin reaction test) and in vitro (IgE-ELISA and dot blotting) analyses and immunoblotting. Two components of 39.6 and 20.7 kDa were found to be the important IgE-binding proteins in pollen extract. The 20.7 kDa component was purified by two-step gel electrophoresis and it was found to retain its IgE reactivity. This component can be used for further work in diagnostic and therapeutic purpose in susceptible individuals. The overall study demonstrated that the pollen grains of Cycas circinalis is one of the important aeroallergen source of West Bengal, India,  相似文献   

12.
13.
Pear is known as an allergenic food involved in the ‘oral allergy syndrome’ which affects a high percentage of patients allergic to birch pollen. The aim of this study was to clone the major allergen of this fruit, to express it as bacterial recombinant protein and to study its allergenic properties in relation to homologous proteins and natural allergen extracts. The coding region of the cDNA was obtained by a PCR strategy, cloned, and the allergen was expressed as His-Tag fusion protein. The fusion peptide was removed by treatment with cyanogen bromide. Purified non-fusion protein was subjected to allergenicity testing by the enzyme allergosorbent test (EAST), Western blotting, competitive inhibition assays, and basophil histamine release. The deduced protein sequence shared a high degree of identity with other major allergens from fruits, nuts, vegetables, and pollen, and with a family of PR-10 pathogenesis related proteins. The recombinant (r) protein was recognised by specific IgE from sera of all pear-allergic patients (n=16) investigated in this study. Hence, the allergen was classified as a major allergen and named Pyr c 1. The IgE binding characteristics of rPyr c 1 appeared to be similar to the natural pear protein, as was demonstrated by EAST-inhibition and Western blot-inhibition experiments. Moreover, the biological activity of rPyr c 1 was equal to that of pear extract, as indicated by basophil histamine release in two patients allergic to pears. The related major allergens Bet v 1 from birch pollen and Mal d 1 from apple inhibited to a high degree the binding of IgE to Pyr c 1, whereas Api g 1 from celery, also belonging to this family, had little inhibitory effects, indicating epitope differences between Bet v 1-related food allergens. Unlimited amounts of pure rPyr c 1 are now available for studies on the structure and epitopes of pollen-related food allergens. Moreover, the allergen may serve as stable and standardised diagnostic material.  相似文献   

14.
The aim of the study was to investigate the possibility of a seasonal variation in reactivity to apples in 27 birch pollen allergic patients. Before and during the birch pollen season 1998, the patients were subjected to double-blind, placebo-controlled food challenges (DBPCFCs) with grated fresh Golden Delicious apple followed by an open food challenge with whole fresh apple. The clinical reactions elicited during the challenges were evaluated both by the patients and the investigators. Moreover, the skin reactivity and the in vitro reactivity to apple were evaluated by skin prick test (SPT), leukocyte histamine release (HR), measurement of specific IgE, and immunoblotting experiments. The sensitivity of the DBPCFC, when compared with the result of the open challenge, was 0.74 (14/19) before the season and 0.80 (16/20) during the season. None of the patients reacted to the blinded challenge without a subsequent reaction to the open challenge. One placebo reaction was registered both before and in season, but not in the same patient. The patient scores of the first positive challenges, and the maximal scores of each combined blinded and open challenge session, were significantly increased during the pollen season (P<0.05). The scores of the open challenge were significantly higher than the scores of the DBPCFC both before the season and during the in-season challenges (P<0.05). Specific IgE against Golden Delicious increased during season (P<0.05), while neither SPT, HR, nor immunoblotting experiments could confirm an increase in reactivity. In conclusion, the results of the oral challenge tests indicated an increase in clinical reactivity to apples during the birch pollen season in birch pollen allergic individuals.  相似文献   

15.
The recognition of conformational epitopes on respiratory allergens by IgE Abs is a key event in allergic inflammation. We report a molecular strategy for the conversion of allergens into vaccines with reduced allergenic activity, which is based on the reassembly of non-IgE-reactive fragments in the form of mosaic proteins. This evolution process is exemplified for timothy grass pollen-derived Phl p 2, a major allergen for more than 200 million allergic patients. In a first step, the allergen was disrupted into peptide fragments lacking IgE reactivity. cDNAs coding for these peptides were reassembled in altered order and expressed as a recombinant mosaic molecule. The mosaic molecule had lost the three-dimensional structure, the IgE reactivity, and allergenic activity of the wild-type allergen, but it induced high levels of allergen-specific IgG Abs upon immunization. These IgG Abs crossreacted with group 2 allergens from other grass species and inhibited allergic patients' IgE binding to the wild-type allergen. The mosaic strategy is a general strategy for the reduction of allergenic activity of protein allergens and can be used to convert harmful allergens into safe vaccines.  相似文献   

16.
The objectives of the present study were: (1) to localise, at the subcellular level, the allergens in pollen of Cupressaceae species, using a monoclonal antibody (mAb 5E6) that is specific for carbohydrate epitopes of allergenic components of Cupressus arizonica pollen extract; (2) to determine whether the glycidic epitope recognised by mAb 5E6 was present in pollen of allergenic species taxonomically unrelated to Cupressaceae; and (3) to determine whether human IgE purified from monosensitive patients recognises the same epitope as mAb 5E6 in Cupressaceae pollen. Immunogold labelling of mAb 5E6 showed a high density of gold particles on the orbicules, supporting the hypothesis that they are important vectors of allergens. A high density was also found on the exine and in the cytoplasm, with the latter finding confirming that fragments of pollen ruptured under humid conditions can represent a vector. The glycidic epitope recognised by mAb 5E6 was detected in all of the species taxonomically unrelated to Cupressaceae, although with varying density. Human IgE recognised the same epitope as mAb 5E6. These findings are consistent with observations of diffuse allergenic cross-reactivity among various allergens. The in situ localisation of a common epitope recognised by both a monoclonal antibody and human IgE could be of importance in immunotherapy.  相似文献   

17.
Skin prick testing is widely used to predict the presence of allergen-specific IgE. In eosinophilic esophagitis patients, who frequently exhibit polysensitization and broad reactivity upon skin prick testing, this is commonly used to aid avoidance recommendations in the clinical management of their disease. We present here the predictive value of skin prick testing for the presence of allergen-specific IgE, in 12 patients, determined by immunoblot against the allergen extracts using individual-matched serum. Our results demonstrate a high degree of predictive value for aeroallergens but a poor predictive value for food allergens. This suggests that skin prick testing likely identifies IgE reactivity towards aeroallergens in adult eosinophilic esophagitis but this is not true for foods. Consequently, IgE immunoblotting might be required for determining food avoidance in these patients.  相似文献   

18.

Background

Current diagnostics for allergies, such as skin prick and radioallergosorbent tests, do not allow for inexpensive, high-throughput screening of patients. Additionally, extracts used in these methods are made from washed pollen that lacks pollen surface materials that may contain allergens.

Methodology/Principal Findings

We sought to develop a high-throughput assay to rapidly measure allergen-specific IgE in sera and to explore the relative allergenicity of different pollen fractions (i.e. surface, cytoplasmic, commercial extracts). To do this, we generated a protein microarray containing surface, cytoplasmic, and commercial extracts from 22 pollen species, commercial extracts from nine non-pollen allergens, and five recombinant allergenic proteins. Pollen surface and cytoplasmic fractions were prepared by extraction into organic solvents and aqueous buffers, respectively. Arrays were incubated with <25 uL of serum from 176 individuals and bound IgE was detected by indirect immunofluorescence, providing a high-throughput measurement of IgE. We demonstrated that the allergen microarray is a reproducible method to measure allergen-specific IgE in small amounts of sera. Using this tool, we demonstrated that specific IgE clusters according to the phylogeny of the allergen source. We also showed that the pollen surface, which has been largely overlooked in the past, contained potent allergens. Although, as a class, cytoplasmic fractions obtained by our pulverization/precipitation method were comparable to commercial extracts, many individual allergens showed significant differences.

Conclusions/Significance

These results support the hypothesis that protein microarray technology is a useful tool for both research and in the clinic. It could provide a more efficient and less painful alternative to traditionally used skin prick tests, making it economically feasible to compare allergen sensitivity of different populations, monitor individual responses over time, and facilitate genetic studies on pollen allergy.  相似文献   

19.
Over the last few decades, the cultivation of maize (Zea mays) has strongly increased in Central Europe. We therefore decided to study the allergen composition and the allergenic potency of its pollen in comparison with pollen from timothy grass (Phleum pratense), a typical representative of the native grasses. We found that 65% of the sera reactive to timothy pollen also bound to maize pollen proteins. By using 2-DE immunoblotting, followed by incubation with mAbs directed against known allergens or protein sequencing, those IgE-reactive components were further classified. Although novel, maize-specific pollen allergens could not be found, the presence of crossreacting allergens belonging to groups 1 and 13 (Zea m 1 and 13), both having high IgE prevalence, as well as the presence of the less important group 3 and 12 allergens was found. The structural variability of Zea m 1 and Zea m 13 was determined by sequencing clones isolated from a maize pollen cDNA library. This revealed sequence identities of 72 and 70%, respectively, to the corresponding Phl p 1 and Phl p 13 allergens of timothy grass pollen. IgE-crossreactivity was further studied using immunoblot inhibition tests. Here, timothy pollen extract completely blocked IgE binding to maize, whereas maize pollen extract blocked IgE reactivity to only some timothy pollen allergens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号