首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
以聚乙二醇马来酸酐双酯(mahPEGmah)、丙烯酰胺(AM)、甲基丙烯酸-N,N-二甲氨基乙酯(DMAEMA)为单体,通过自由基共聚,合成了一种高强度且具有温度、pH、电场响应性的智能型复合水凝胶。利用红外光谱(FT-IR)、扫描电镜(SEM)、X射线衍射(XRD)分析表征了凝胶的化学结构、形貌、结晶性能。研究结果表明,采用油溶性引发剂、交联剂在非均相体系中合成的水凝胶压缩强度明显优于水溶性引发剂、交联剂合成的水凝胶,且PEG相对分子质量为1000时,凝胶压缩强度可达12.5 MPa;随着DMAEMA含量的增加,凝胶的低临界溶解温度(LCST)升高,同时凝胶断面的SEM显示凝胶的韧性先增大后减小,当n(mahPEG1000mah)∶n(AM)∶n(DMAEMA)=1∶8∶1时,凝胶的韧性最好;PEG的相对分子质量增大,凝胶溶胀度上升、响应敏感性增强;随交联度的增大,凝胶的最大弯曲角度和电场敏感性有所降低。  相似文献   

2.
以聚乙二醇马来酸酐双酯(mahPEGmah)、丙烯酰胺(AM)、甲基丙烯酸-N,N-二甲氨基乙酯(DMAEMA)为单体,通过自由基共聚,合成了一种高强度且具有温度、pH、电场响应性的智能型复合水凝胶。利用红外光谱(FT-IR)、扫描电镜(SEM)、X射线衍射(XRD)分析表征了凝胶的化学结构、形貌、结晶性能。研究结果表明,采用油溶性引发剂、交联剂在非均相体系中合成的水凝胶压缩强度明显优于水溶性引发剂、交联剂合成的水凝胶,且PEG相对分子质量为1000时,凝胶压缩强度可达12.5 MPa;随着DMAEMA含量的增加,凝胶的低临界溶解温度(LCST)升高,同时凝胶断面的SEM显示凝胶的韧性先增大后减小,当n(mahPEG1000mah)∶n(AM)∶n(DMAEMA)=1∶8∶1时,凝胶的韧性最好;PEG的相对分子质量增大,凝胶溶胀度上升、响应敏感性增强;随交联度的增大,凝胶的最大弯曲角度和电场敏感性有所降低。  相似文献   

3.
采用γ射线辐照法,以壳聚糖(CTS),丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDACC)为原料,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,制备了壳聚糖-丙烯酰胺-二甲基二烯丙基氯化铵(CTS-AM-DMDAAC)水凝胶。研究了吸收剂量、单体配比、交联剂用量等因素对水凝胶溶胀性能的影响,并考察了水凝胶的环境响应性。结果表明,制备水凝胶的适宜条件为吸收剂量为4kGy,总单体AM和DMDAAC中AM与DMDAAC质量比为2.33∶1,总单体与CTS质量比2.67∶1、MBA用量为总单体质量的2.5%,在此条件下,制得的水凝胶溶胀度最高;CTS-AM-DMDAAC水凝胶对pH值和离子强度具有良好的敏感性。  相似文献   

4.
以N,N-亚甲基双丙烯酰胺(BIS)为交联剂,过硫酸铵(APS)为引发剂,采用自由基引发聚合,使丙烯酰胺(AM)和甲基丙烯酸(MAA)在氧化石墨烯(GO)水溶液中进行共聚,制备了GO/PAM/PMAA复合水凝胶。研究了GO、MAA和BIS含量对复合水凝胶性能的影响。结果表明,GO/PAM/PMAA复合水凝胶具有三维网络结构,表现出pH敏感性,具有较好的药物缓释性能;热稳定性、力学性能随GO、BIS含量的增加而增强;平衡溶胀比随GO、BIS含量的增加而降低,随MAA含量的增加先增大,后减小,当n(AM)∶n(MAA)=10∶1时达到最大值。  相似文献   

5.
采用二步法,以锂藻土(Laponite)交联聚丙烯酰胺(PAM),N,N-亚甲基双丙烯酰胺(BIS)交联聚丙烯酸(PAA),通过自由基聚合制备了PAM/PAA双网络水凝胶。该水凝胶的拉伸强度可达137 k Pa,在酸性缓冲液中收缩,碱性缓冲液中溶胀,具有灵敏的pH响应性。通过调节丙烯酸(AA)单体的中和度和2种网络交联剂的用量及单体配比,可控制双网络水凝胶的拉伸性能和响应性能。结果表明,AA中和度为125%,m(AM)∶m(Laponite)=1∶0.6,m(AA)∶m(BIS)=1∶0.0002,m(AM)∶m(AA)=7∶1时,水凝胶的拉伸强度最佳,可达137 k Pa;该条件下制备的双网络水凝胶同时具有灵敏可逆的pH响应性,在pH=3的缓冲液中溶胀度达5.26,在pH=7的缓冲液中溶胀度可达16.98。  相似文献   

6.
以甲基丙烯酸(MAA)、丙烯酰胺(AM)为单体,N,N-亚甲基双丙烯酰胺作交联剂(BIS),过硫酸铵为引发剂(APS),用溶液聚合的方法合成水凝胶P(MAA-co-AM),研究了单体配比及干燥方式对水凝胶表面形貌以及对水、不同pH溶液及盐溶液的溶胀行为的影响。结果表明,P(MAA-co-AM)16凝胶(MAA/AM摩尔比为16∶100)冻干处理后具有均匀的大孔;与PAM和PMAA凝胶相比,P(MAA-co-AM)16凝胶的吸水溶胀速率快(1h溶胀平衡)、平衡溶胀比大(ESR=250)、pH体积响应变化大(pH为4.01、6.86、9.18时的ESR分别为20、60、141),吸盐率比PMAA有所提高。  相似文献   

7.
朱金龙  郑聚成  张定军 《材料导报》2021,35(16):16149-16154
本工作采用前端聚合法制备聚(N-乙烯基己内酰胺-co-N,N-二甲基丙烯酰胺)智能水凝胶,针对两种单体,即N-乙烯基己内酰胺( N-VCL)和N, N-二甲基丙烯酰胺(DMAA),研究了单体物质的量比、交联剂和引发剂用量对前端聚合参数以及共聚水凝胶性能的影响,并用阿司匹林作为模型药物,评价了共聚物水凝胶对阿司匹林的负载和缓释效果.实验表明,共聚产物具有温度敏感性,相转变温度在25~40 ℃之间,单体N,N-二甲基丙烯酰胺(DMAA)加入之后,凝胶对温度刺激的敏感性响应更为明显.随单体DMAA含量的增加,波温、波速也升高,温室溶胀率增加.当n(N-VCL) ∶ n(DMAA)=5 ∶5时,水凝胶的温敏性最好;随交联剂用量的增大,共聚凝胶室温溶胀能力、温敏性均有所降低;随引发剂用量的增加,相变温度升高.随单体DMAA比例增加,在25 ℃和37 ℃两种温度下凝胶载药量均增加,但就释药效果而言,在37 ℃下凝胶释药效率更高,总释药率也更高.  相似文献   

8.
用4-乙烯基苄基胺与葡萄糖内酯反应合成了4-乙烯苄基葡萄糖酰胺单体(VBG),然后以亚甲基双丙烯酰胺(BisA)为交联剂,与丙烯酰胺(AM)、衣康酸(IA)共聚得到含糖结构的三元共聚水凝胶。用热重分析对水凝胶的稳定性进行了表征。水凝胶的膨胀比随着VBG或IA含量的增加而下降;在低pH值或高pH值时水凝胶的膨胀比下降。随氯化钠浓度的提高,水凝胶的膨胀比下降。随着温度的升高水凝胶的膨胀比出现不同的变化,凝胶中VBG含量的增加,水凝胶的膨胀比随着温度的升高而下降,凝胶中IA含量的增加,水凝胶的膨胀比随着温度的升高反而升高。  相似文献   

9.
通过自由基溶液聚合法,在氧化石墨烯(GO)水溶液中合成聚N,N-二甲基丙烯酰胺/氧化石墨烯(PDMA/GO)纳米复合第一网络水凝胶,之后以N,N-亚甲基双丙烯酰胺(BIS)为交联剂引入化学交联聚丙烯酸(PAA)作为第二网络制备高强度的GO纳米复合双网络水凝胶。通过热重分析、力学性能测试、pH敏感性研究了第二单体AA和GO浓度对GO纳米复合双网络水凝胶性能的影响。结果发现,热稳定性、力学性能随GO含量的增加而增加,随AA含量的增加先增加后减小。当pH4.25时,GO纳米复合双网络水凝胶具有pH敏感性。  相似文献   

10.
壳聚糖接枝丙烯酸/丙烯酰胺水凝胶的制备及性能   总被引:4,自引:0,他引:4  
以丙烯酸(AA)、丙烯酰胺(AM)两种单体同时对壳聚糖(CTS)进行接枝改性,合成了具有环境响应性的壳聚糖水凝胶,讨论了各合成因素对凝胶溶胀性能的影响及凝胶对pH值、离子强度和温度的响应性。结果表明,当反应时间为2h~2.5 h、单体与CTS质量比为8∶1、反应温度在60℃左右、引发剂用量为0.35%(占单体和CTS总量的百分比,下同)、交联剂用量为0.125%时,制得的水凝胶最高溶胀度可达224 g/g,而且该凝胶同时具有pH值、离子强度和温度敏感性。  相似文献   

11.
以丙烯酰胺(AM)、丙烯酰氧乙基三甲基氯化铵(DAC)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,过硫酸铵-亚硫酸氢钠为氧化-还原引发剂,采用水溶液三元共聚,合成了两性高分子PADA。通过考察单体配比、反应温度、引发剂用量以及反应pH值对产物特性黏数和污泥脱水效果的影响,得出了PADA的最佳合成条件为:单体配比n(AM)∶n(DAC)∶n(AMPS)为90∶6.5∶3.5,引发剂占体系的质量分数为0.4‰~0.65‰,其中n(过硫酸铵)∶n(亚硫酸氢钠)为1∶1,反应温度25℃~40℃,pH为4.0~6.5。合成的PADA特性黏数η为1820 mL/g,阳离子度7.0,残留AM单体含量0.2%。产品用于污泥调理,滤饼含水率可降至77.8%。  相似文献   

12.
以丙烯酰胺(AM)和二甲基二烯丙基氯化铵(DMDAAC)为单体,N,N′-亚甲基双丙烯酰胺为交联剂,过硫酸铵和亚硫酸氢钠为氧化还原引发剂,采用水溶液聚合法制备了AM/DMDAAC水凝胶。考察了样品水凝胶的离子强度敏感性和pH敏感性,以及在外加直流电场刺激下的消溶胀动力学。结果表明,样品水凝胶具有灵敏的离子强度敏感性,在NaCl质量分数为0.3%左右发生体积相变;对pH变化不敏感,具有很好的酸碱耐受性;DM-DAAC单体含量对水凝胶的电敏感性能有显著影响。  相似文献   

13.
以N,N,-亚甲基双丙烯酰胺(NMBA)为交联剂,在无氮气保护和不添加任何引发剂条件下,采用紫外辐照法合成魔芋粉(KF)/丙烯酰胺(AM)/马来酸酐(MA)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS)共聚吸附树脂,研究了单体摩尔比、pH、交联剂用量、魔芋粉含量对树脂吸附亚甲基蓝的影响,并借助FT-IR、TG对树脂的结构、热稳定性进行了研究。实验表明:在优化条件下,n(AMPS)∶n(AM)∶n(MA)=2.5∶0.5∶0.4;w(KF)=2.5%,pH=3,w(NMBA)=0.35%,tcuring=5min时合成的树脂对亚甲基蓝的吸附量为104.14mg/g。  相似文献   

14.
采用化学交联剂亚甲基双丙烯酰胺(MBA)和物理交联剂无机纳米黏土硅酸镁锂(LMSH)复配制备聚异丙基丙烯酰胺(PNIPAM)水凝胶。随m(MBA)∶m(LMSH)的质量比由9∶1降至为1∶9,水凝胶的透光度和溶胀度增加。凝胶的内部形态取决于交联剂配比,孔洞尺寸随LMSH含量增加而增加。当m(MBA)∶m(LMSH)的质量比为9∶1和1∶9时,温度脉冲响应性最好,但m(MBA)∶m(LMSH)的质量比为1∶9时凝胶对温度的响应最为敏感,20℃下的储能模量最高。DSC结果表明体积相转变温度(VPTT)均在33℃左右,但VPTT范围随LMSH含量增加而窄化。  相似文献   

15.
以N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,在没有引发剂和氮气保护的情况下,利用静置法制备以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)、丙烯酰胺(AM)、顺丁烯二酸酐(MA)为单体的四元共聚高吸水树脂,通过对反应条件优化,得到了最佳工艺条件:单体配比n(AMPS)∶n(AA)∶n(AM)∶n(MA)=1∶1∶1∶1,ω(NMBA)=0.03%,pH=2.2,在此条件下树脂吸蒸馏水倍率达到533倍。初步对树脂的吸液能力、耐热保水性、吸水速率、以及反复吸液性进行了研究,同时借助FT-IR、TG-DTG和显微镜对其结构、热稳定性及表面形态进行了表征。  相似文献   

16.
含苯并环丁烯(BCB)功能基团的单体N-(苯并环丁烯-4-基)丙烯酰胺(NBCBAA)与丙烯酰胺(AM)在溶剂中发生自由基共聚反应,固化后形成聚丙烯酰胺水凝胶,采用红外光谱对其结构进行了表征.通过系列实验对凝胶的溶胀行为进行了研究,结果表明,不同的共聚比例时凝胶的溶胀速率以及平衡溶胀比有影响,该凝胶具有良好的重复吸水性、一定的温敏性和pH敏感性.  相似文献   

17.
利用两步法合成了聚丙烯酰胺(PAM)/聚甲基丙烯酸(2-甲基氨基)乙酯(PDMAEMA)双网络水凝胶,第一网络为锂藻土(Laponite)物理交联的PAM纳米复合水凝胶,第二网络为化学交联剂N,N-亚甲基双丙烯酰胺(BIS)交联PDMAEMA。研究了2种网络相对含量、纳米黏土Laponite用量、化学交联剂BIS用量对水凝胶强度和pH响应性的影响。研究结果表明,PAM/PDMAEMA双网络水凝胶具有高强度,改变单体AM和DMAEMA的配比、交联剂的用量,其拉伸强度在36~91.9 kPa范围内可调。PAM/PDMAEMA双网络水凝胶还具有灵敏的pH刺激响应性,在pH=4时双网络水凝胶溶胀度急剧下降。  相似文献   

18.
以丙烯酸(AA)和N,N-二甲基丙烯酰胺(DMAA)为单体,采用泡沫分散聚合法制备P(AA-co-DMAA)超大孔水凝胶及载有盐酸小檗碱的载药凝胶,研究单体配比、温度、pH值和NaCl浓度对载药凝胶释放性能的影响。结果表明,凝胶具有超大孔结构及pH敏感性;n(AA)∶n(DMAA)=1∶1的载药凝胶释放率最小;升高温度使载药凝胶的释放率增大;在pH=1的HCl溶液和pH=6.8的磷酸盐缓冲溶液中,载药凝胶释放率远大于蒸馏水;NaCl溶液浓度越大,载药凝胶的释放率越大。  相似文献   

19.
通过自由基聚合反应制备出以芦苇半纤维素为基材的温度/pH双重敏感性水凝胶材料。考察不同单体丙烯酸(AA)和N-异丙基丙烯酰胺(NIPAAm)摩尔比对其温度和pH的响应能力,探讨水凝胶的形成机制和消溶胀动力学行为。结果表明,四种不同单位摩尔比水凝胶均具有温度和pH双重敏感性,NIPAAm摩尔比含量高的水凝胶对温度响应更为敏感,而结构中的AA对水凝胶pH敏感行为起主要作用,消溶胀动力学符合准一级模型,消溶胀速率随NIPAAm摩尔比增加而加大。  相似文献   

20.
以叔丁醇-水混合介质为溶剂,丙烯酰胺(acrylamide, AM)为单体进行凝胶注模成型,研究了叔丁醇含量、反应温度、引发剂和催化剂加入量等参数对凝胶时间与胶体形态的影响。结果发现,凝胶时间随叔丁醇用量的增加而增加,但随反应温度的提高显著下降;随引发剂含量的增加,凝胶时间先快速降低至一定水平后保持较为稳定的状态,继续增加引发剂用量,凝胶时间基本呈线性增加;随催化剂用量的增加,凝胶时间持续减少,在催化剂加入量较低时凝胶时间变化显著。在反应温度25℃、叔丁醇含量30%(体积分数)、引发剂2.5%(质量分数)、催化剂0.1%(质量分数)时,凝胶时间为25 min,凝胶时间适宜,所得样品表面质量良好,干燥收缩率较低,能够满足实际需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号