首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption characteristics of 18 proteins, with different sizes and isoelectric points, to a titanium oxide surface were studied. The adsorption isotherms were categorized based on protein type and pH: type 1, irreversible adsorption; type 2, Langmuir-type reversible adsorption; and type 3, reversible and irreversible adsorption. Most of the proteins tested were irreversibly adsorbed in the pH range of 3-8, whereas most adsorbed reversibly at pH 8.5-9.4. Protamine, with a pI value of 12, adsorbed reversibly in the pH range of 3-9. pH values that gave maximal sums of irreversibly and reversibly adsorbed proteins were in the pH range of 3-8 and tended to increase slightly with the pI value of the corresponding protein. pH values that gave maximal quantities of irreversibly adsorbed protein ranged between 4-6 and were nearly independent of pI.  相似文献   

2.
Sorption may affect the bioavailability and biodegradation of pesticides in soils. The aim of this study was to test the effect of surface sorption on microbial utilization of the herbicide glyphosate as a source of phosphorus, nitrogen, or carbon. We added goethite to a humus soil to manipulate the soil's glyphosate sorption capacity. The addition of glyphosate generally either decreased microbial CO2 production or produced no effect. Additions of glyphosate, in combination with glucose and N, did not change the respiration rate in comparison with the same treatment but without glyphosate. In contrast, glyphosate additions combined with glucose and P decreased microbial growth, whereas the combination with goethite counteracted the negative effect. The different treatments were examined using attenuated total reflectance Fourier transform (ATR-FTIR) spectroscopy; the results suggest that glyphosate was de-carboxylated in the sorbed state. Stimulating microbial growth by the addition of glucose and nitrogen resulted in further oxidation of glyphosate and only phosphate was detectable on the goethite surface after 13 days incubation. Our results show that sorbed glyphosate is microbially degradable, and it retards microbial activity. This study emphasizes the importance of combining quantitative measurements with a molecular-level examination, to better understand biogeochemical processes.  相似文献   

3.
The surface charges of clean and natural organic matter (NOM)-adsorbed membrane surfaces of two different types of membranes (a UF and a NF membrane composed of the same material but having different pore sizes) were investigated. Concentrated NOM and its fractionated constituents were used as adsorbate and interacting macromolecules nearthe membrane surface. The zeta potential and the acidity of membranes were measured using electrophoresis and potentiometric titration methods, respectively, from the perspective of charge characterization, along with demonstration of ionic strength effects. The membrane surface was also characterized with attenuated total refractive Fourier transform infrared spectra to determine intrinsic functional groups and those changes before and after NOM adsorption. As a comparative study for the electrokinetic property of membrane, the zeta potentials for both examined polymeric membranes were determined by the electrophoresis and the streaming potential measurement methods as functions of ionic strength and the pH of measuring solution. Selectivity tests were performed to decide the relative importance of charge valence of cation in terms of the surface charge of membrane. It was demonstrated that divalent cations (Ca2+, Mg2+) increase zeta potentials relatively compared to monovalent cations (Na+, K+) because divalent cations have a greater potential in approaching membrane surfaces (i.e., inside the Stern layer). Thus, divalent cations can provide a greater double layer compaction and, when near the shear plane (available for both the zeta potential measurement methods), exist to a lesser extent than monovalent cations.  相似文献   

4.
Hydrous ferric oxide (HFO) and titanium dioxide exhibit similar strong attachment of many adsorbates including biomolecules. Using surface complexation modeling, we have integrated published adsorption data for glutamate on HFO over a range of pH and surface coverage with published in situ ATR-FTIR studies of glutamate speciation on amorphous titanium dioxide. The results indicate that glutamate adsorbs on HFO as a deprotonated divalent anion at pH 3-5 and 0.2 micromol x m(-2) in the form of chelating-monodentate and bridging-bidentate species attached to the surface through three or four of the carboxylate oxygens, respectively. The amine group may interact weakly with the surface. However, at similar pH values and higher surface coverages, glutamate adsorbs mainly as a monovalent or divalent anion chelated to the surface by the gamma-carboxylate group. In this configuration the alpha-carboxylate and amine groups might be free to interact above the surface with the free ends of adjacent glutamates, suggesting a possible mechanism for chiral self-organization and peptide bond formation.  相似文献   

5.
The Hanç?l? (Keskin, Ankara, Turkey) bentonite was activated with H2SO4 by dry method at 97 °C for 6 h to obtain optimum parameters for imparting a maximum bleaching power towards soybean oil. The H2SO4 content in dry bentonite-acid mixture was changed between 0% and 70%. The natural and activated samples were examined by X-ray diffraction (XRD), N2 adsorption–desorption, and n-butylamine adsorption (from the solution in cyclohexane). The specific surface area (S), specific micro–mesopore volume (V), mesopore size distribution (PSD), and surface acidity (nm) of the samples were determined. The bleaching power (BP) of each sample for alkali-refined soybean oil was determined. The S, V, nm, and BP increase after activation at various acid contents up to 40% H2SO4 without any considerable change in crystal structure of the smectite. The BP is controlled more by the PSD rather than other adsorptive properties of the bleaching earth. The optimum parameters for activation to obtain maximum bleaching power, are H2SO4% = 50–60, S = 250–230 m2 g−1, V = 0.46–0.47 cm3 g−1, nm = 9.0 × 10−4–8.4 × 10−4 mol g−1 and PSD mainly distributed between 1.4 and 6.0 nm.  相似文献   

6.
The effects of dilution of protein content in skim milk (34–8.5% protein content), by lactose addition, on the surface composition, water sorption property and glass transition temperatures of spray-dried powders were investigated. The X-ray photoelectron spectroscopy (XPS) study of spray-dried powders showed preferential migration of proteins toward the surface of the milk particles whereas the lactose remained in the bulk. Sorption studies showed that the lower protein concentration in milk powders is linked to an increased water adsorption property and lowering of water activity (aw) for lactose crystallization. Analysis of glass transition temperature (Tg) of the powders sorbed at different humidities showed no distinct change in Tg values, indicating the dominant effect of lactose on the glass transition temperature of all the powders.  相似文献   

7.
The discovery that negatively charged aggregates of C60 fullerene are stable in aqueous environments has elicited concerns regarding the potential environmental and health effects of these aggregates. Many previous studies have used aggregates synthesized using intermediate organic solvents. This work primarily employed an aggregate production method that more closely emulates the fate of C60 upon accidental release into the environment: extended mixing in water. The aggregates formed via this method (aqu/nC60) differ from those produced using the more common solvent exchange methods. The aqu/nC60 aggregates are heterogeneous in size (20 nm and larger) and shape (facetted to spherical), negatively charged, and crystalline in structure, exhibiting a face centered cubic (FCC) system. Solution characteristics such as aqu/nC60 aggregate size and concentration were found to be dependent upon preparation variables such as initial C60 concentration, initial particle size, and the presence or absence of natural organic matter. These results indicate that care should be taken when attempting to compare experimental results obtained with aqu/nC60 to nC60 produced by solvent exchange methods.  相似文献   

8.
Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO(3)](T), [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO(2) nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U L(III)-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO(3) present, and coincided with nucleation and growth of UO(2) particles. When Ca and CO(3) were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO(2) particles achieved a maximum height of 4-5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO(2) nanoprecipitates at surface-specific sites after 2-3 h of exposure, and (3) completion of U(VI) reduction after ~6-8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.  相似文献   

9.
Atomic force microscopy (AFM) is employed to directly measure colloidal surface forces between a silica particle and a smooth glass plate in an aqueous solution with or without the presence of copper ions. Without the presence of copper ions, results show that the force between these two surfaces is repulsive and that its magnitude decreases with increasing ionic strength and decreasing pH. The surface forces are calculated based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for constant surface charge and are then compared with AFM force measurements. A good agreement between theory and experimental data is reported except at very small separation distances (<3 nm) between the silica particle and the glass plate. This behavior may be attributed to non-DLVO forces, such as the hydration effect that results from the bounded water molecules on the surface of the silica particle, or to surface roughness. When copper ions are present in acidic aqueous solutions, the magnitude of the force is found to be the same as that without the presence of copper ions, which indicates that no sorption of copper ions by the silica particle occurs under these conditions. Near neutral pH, sorption of copper ions causes charge reversal for the silica particle from negative to positive. Therefore, the force between the silica particle and the glass plate changes from repulsive to attractive. The transient zeta-potential of the silica particle during sorption of copper ions is determined by representing the experimental data with the DLVO theory. In alkaline solutions, where removal of copper ions is known to occur mainly by bulk precipitation, the measured force is similar to that without the presence of copper ions, which suggests that sorption does not occur under such conditions.  相似文献   

10.
Numerous studies suggested carbon nanotubes (CNTs) as a type of promising sorbent for heavy metals from water and explained the sorption mechanism mainly by oxygen-containing functional groups on CNT surfaces but neglected the potential role of metal catalyst residues in CNTs. This is a first study showing that metal impurities could dominate the sorption of one type of commercially available CNTs (P-CNTs) for Pb(II) from water, which will help to understand and guide environmental applications of CNTs as a sorbent. Sorption capacity of P-CNTs (27.3 mg g(-1)) for Pb(II) was much higher than that of the water-washed P-CNTs (W-CNTs, 4.7 mg g(-1)). SEM-EDS and ICP-MS analyses showed that both P-CNTs and W-CNTs contained metal impurities (mainly Co and Mo) which released into the solutions during the sorption, especially P-CNTs. XAFS examination and precipitation experiments demonstrated that PbMoO(4) formation between Pb(II) and CNT-released MoO(4)(2-) and subsequent precipitation in the sorptive solutions was the dominant mechanism for the apparent sorption of Pb(II) by P-CNTs.  相似文献   

11.
The adsorption characteristics of octapeptides, containing different numbers of aspartic acid, lysine, and alanine residues (i.e., D(4)K(0)A(4), D(4)K(1)A(3), D(4)K(3)A(1), D(4)K(4)A(0), and D(0)K(4)A(4)) on the surface of titanium (Ti) particles were investigated in the pH range of 3.0-8.8 at 30 degrees C. The adsorption isotherms for octapeptides having four plural aspartic acid residues with or without lysine residues showed two distinct adsorption modes, i.e., irreversible and reversible modes, at pHs 3.0-6.5; at pH 7.0 or higher, the adsorption mode was reversible. Increasing the number of lysine residues at a fixed number of aspartic acid residues (i.e., 4) decreased the amount of peptides adsorbed in both modes. D(4)K(4)A(0) adsorbed irreversibly at pHs 3.0-6.5, due to the fact that negatively charged carboxyl groups directly interact with a positively charged Ti surface, whereas positively charged amino groups of lysine residues are directed in an opposite direction toward the solution side, as predicted by molecular mechanics/dynamics calculations.  相似文献   

12.
13.
The objective of this study was to provide fundamental knowledge of arsenate sorption on lithium/aluminum layered double hydroxide intercalated by chloride (Li/Al LDH-Cl) and further to reveal the contribution of exposed positive charge surface of Li/Al LDH-CI created by intercalating LiCl into Al(OH)3 layers to arsenate sorption. Therefore, sorption isotherms, envelopes and extended X-ray absorption fine structure (EXAFS) technique were employed to examine the reaction of arsenate on Li/Al LDH-Cl and on gibbsite. Based on an isotherm study, the sorption maximum of Li/Al LDH-Cl for arsenate was approximately six times higher than that of gibbsite. Sorption envelopes of arsenate on Li/Al LDH-Cl displayed a pH-sensitive behavior from pH 4.0 to 7.0, but it was insensitive to pH above pH 7.0, approaching to the pHpzc of Li/Al LDH-Cl (7.22). This transformation with shifted pHs illustrated that there were two types of reaction sites within Li/Al LDH-Cl that participate in arsenate sorption; one is pH-sensitive and the other is not. From EXAFS analysis, arsenate sorbed on Li/Al LDH, reacted not only with Al in the edges of Al-(OH)3 layers, but also with Li located in the vacant octahedral sites within Al(OH)3 layers; however, the decreasing intensity of As(V)-Al shells with increasing pH represented there were fewer As(V)-Al complex existed at higher pH, i.e., the complex between arsenate and Al is pH-sensitive. The superior sorption capability of Li/Al LDH-Cl to that of gibbsite could be attributed to the intercalated Li cations which served as the permanent sorption sites and made the surface of Al(OH)3 have high affinity to arsenate.  相似文献   

14.
Knowledge of toxic chemical sorption by carbon nanotubes (CNTs) is critical for environmental application of CNTs as superior sorbents and for environmental risk assessment of both CNTs and toxic chemicals. Single-solute sorption results were reported in the literature, however, they cannot be used for predicting pollutant sorption by CNTs in wastewater and natural water systems where multiple organic contaminants are present. In this study, competitive sorption of pyrene, phenanthrene, and naphthalene on a multiwalled CNT material was investigated. All isotherms in single-, bi-, and tri-solute systems were fitted well by the Dubinin-Ashtakhov (DA) model. The isotherm of a given primary solute changed from being significantly nonlinear to nearly linear when competitors were added. The observed competitive sorption depended on the relative equilibrium concentrations of both primary and cosolutes. Significant competition was observed at relatively low concentrations of primary solute and high concentrations of competitors, while competition was much weaker in the case of relatively high concentrations of primary solute and low competitor concentrations. When the relative concentration of primary solute (Ce/Cs) approached 1, competition by other solutes seemed to disappear. Sorption and competition of three polycyclic aromatic hydrocarbons (PAHs) on CNTs could not be explained with either pore-filling or partition-adsorption mechanisms. A Polanyi-based surface adsorption mechanism was proposed to interpret the observed sorption and competition.  相似文献   

15.
目的测定块菌中4种重金属(砷、铅、汞、镉)及无机砷、有机汞含量并进行分析评价。方法采用电感耦合等离子体质谱法(inductively coupled plasma mass spectrometry, ICP-MS)检测块菌种总砷、总汞、铅、镉含量,采用液相-原子荧光光谱联用法(liquid chromatography-atomic fluorescence spectrometry, LC-AFS)检测块菌中无机砷、有机汞含量。结果块菌中无机砷和有机汞含量极低,但铅、镉含量较高。铅的含量为0.8282 mg/kg,镉的含量为0.4040 mg/kg。结论块菌作为一种完全生长在地下的大型真菌,具有较高的重金属吸附富集能力,应加强对此类野生菌的重金属污染物监测。  相似文献   

16.
Humic acids (HAs) form coatings on clays and minerals that can play an important role in nutrient and contaminant migration in soil and water. Humic acid-clay mineral interactions are known to be affected by pH and ionic strength, but little attention has been paid to the effects of temperature. In this paper we report the stoichiometry and thermodynamics of interactions of aqueous HAs (isolated from two peats, two soils and a marine alga with a method that removes lipids) with kaolinite clay, Al2Si2O5(OH)4, at seven temperatures from 5.0 to 35.0 degrees C in 0.05 M NaCl at pH 3.5. All the sorption isotherms exhibit consecutive steps ascribed to HA monolayer and bilayer formation, respectively. Site capacity comparisons suggest different HA molecular conformations on kaolinite. Linearly correlated enthalpy and entropy changes for HA sorption point to the importance of hydration and dehydration in the sorption mechanism.  相似文献   

17.
18.
19.
Sheep grazing limed pasture for periods extending to 14 months had consistently lower mean blood copper concentrations than similar sheep on comparable untreated pasture. Liver copper concentrations and total liver copper contents were also significantly lower for the sheep on the limed herbage. Liming did not affect the herbage copper concentration. Herbage copper concentrations of 8-9 ppm appeared to be insufficient to maintain the blood and liver copper status of sheep grazing limed pasture at adequate levels. Prolonged oral supplementation providing 70 mg Cu per week as the sulphate, glycinate or EDTA salt increased blood and liver copper concentrations to similar degrees and with no apparent risk of toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号