首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Federal Highway Administration recommends that stream stability analyses at bridges over water begin with a Level 1 assessment. Following this assessment of the physical condition of the stream in the vicinity of the bridge, the user must determine whether or not the relative risk is low. If it is low, then no action is needed. If the risk is greater than low, then a Level 2 analysis is recommended; however, no method is given for determining the risk. In this paper, the relative risk of unsatisfactory conditions at bridge foundations is assessed as a simple function of vulnerability and criticality. Vulnerability is based on a stream stability assessment and data from the National Bridge Inventory (NBI). Criticality is determined indirectly as a function of the bridge serviceability and cost by using data extracted from the NBI. Relative risk is then qualitatively determined by combining vulnerability and criticality. Three examples in central Pennsylvania are provided in which the relative level of risk is used to determine the need for a Level 2 analysis.  相似文献   

2.
Bridge Pier Scour under Flood Waves   总被引:1,自引:0,他引:1  
The effect of a single-peaked flood wave on pier scour is investigated both theoretically and experimentally. The conditions considered involve clear-water scour of a cohesionless material of given median sediment size and sediment nonuniformity, an approach flow characterized by a flow depth and velocity, a circular-shaped cylindrical bridge pier, and a flood hydrograph defined by its time to peak and peak discharge. A previously proposed formula for scour advance under a constant discharge was applied to the unsteady approach flow. The generalized temporal scour development along with the end scour depth are presented in terms of mainly the densimetric particle Froude number based on the maximum approach flow velocity and the median sediment size. The effect of the remaining parameters on the end scour depth is discussed and predictions are demonstrated to be essentially in agreement with model observations.  相似文献   

3.
The deterioration of physical and serviceable conditions of highway bridges in Vietnam increasingly have become major social and technical concerns. Moreover, the maintenance management system applied currently is considered outdated and not satisfying the actual traffic and social demands imposed on highway bridges. This paper is an attempt to develop an advanced maintenance management system (V-BMS) concurrently with a computerized database for highway bridges in Vietnam. The current status of existing bridges is first reviewed in terms of the physical condition and the maintenance management practice in order to identify outstanding problems. Several advanced techniques have been, therefore, introduced into the V-BMS to manage and maintain highway bridges in the most suitable manner. Furthermore, practical application in a direct-maintenance agency is presented as an example to demonstrate the validity of the database. In order to be successful, the paper recommends fully testing the system on various actual conditions of Vietnam, so necessary modification can be made.  相似文献   

4.
The two-dimensional (2D) depth-averaged river model Finite-Element Surface-Water Modeling System (FESWMS) was used to predict flow distribution at the bend of a compound channel. The site studied was the Highway 13 bridge over the Big Sioux River in Flandreau, South Dakota. The Flandreau site has complex channel and floodplain geometry that produces unique flow conditions at the bridge crossing. The 2D model was calibrated using flow measurements obtained during two floods in 1993. The calibrated model was used to examine the hydraulic and geomorphic factors that affect the main channel and floodplain flows and the flow interactions between the two portions. A one-dimensional (1D) flow model of the bridge site was also created in Hydrologic Engineering Centers River Analysis System (HEC-RAS) for comparison. Soil samples were collected from the bridge site and tested in an erosion function apparatus (EFA) to determine the critical shear stress and erosion rate constant. The results of EFA testing and 2D flow modeling were used as inputs to the Scour Rate in Cohesive Soils (SRICOS) method to predict local scour at the northern and southernmost piers. The sensitivity of predicted scour depth to the hydraulic and soil parameters was examined. The predicted scour depth was very sensitive to the approach-flow velocity and critical shear stress. Overall, this study has provided a better understanding of 2D flow effects in compound channels and an overall assessment of the SRICOS method for prediction of bridge pier scour.  相似文献   

5.
Bridge engineers are often faced with the task of selecting and designing effective bridge scour countermeasures. The selection of an appropriate countermeasure is dependent on whether the problem is local scour at the pier or abutment, contraction scour across the bed at the bridge opening, reach-wide channel degradation, or lateral channel movement. Confidence in a given countermeasure depends on prior experience in using the measure, cost, maintenance, and the ability to detect failure. The use of countermeasures often introduces uncertainty due to a lack of systematic testing and unknown potential for failure. In this paper, a risk-based method for ranking, comparing, and choosing the most appropriate scour countermeasures is presented using failure modes and effects analysis and risk priority numbers (RPN). Failure modes and effects analysis incorporates uncertainty in the selection process by considering risk in terms of the likelihood of a component failure, the consequence of failure, and the level of difficulty required to detect failure. Risk priority numbers can provide justification for selecting a specific countermeasure and the appropriate compensating actions to be taken to prevent failure of the countermeasure.  相似文献   

6.
There is a tendency for traffic loads to increase with the passage of time. It is not uncommon, therefore, for bridges to be strengthened and/or widened or sometimes to have lanes or even complete decks added. A few bridges were designed initially with a view to future expansion, such as the George Washington Suspension Bridge, designed to accommodate an extra deck, and the Salazar (now April 25) Bridge, designed to have two train tracks added, but these are exceptions. Suspension bridges behave somewhat differently from other bridge types, and the methods for increasing capacity can also be different. Some ideas are presented of how suspension bridges can be altered to accommodate more load, be it automobile, pedestrian, or even train traffic, and some examples are given. The importance of understanding both structural behavior and structural safety is emphasized.  相似文献   

7.
Fuzzy logic is a means for modeling the uncertainty involved in describing an event/result using natural language. The fuzzy logic approach would be particularly useful for remedying the uncertainties and imprecision in bridge inspectors’ observations. This study explores the possibilities of using fuzzy mathematics for condition assessment and rating of bridges, developing a systematic procedure and formulations for rating existing bridges using fuzzy mathematics. Computer programs developed from formulations presented in this paper are used for evaluating the rating of existing bridges, and the details are presented in the paper. In this approach, the entire bridge has been divided into three major components—deck, superstructure, and substructure—each of which is further subdivided into a number of elements. Using fuzzy mathematics in combination with an eigenvector-based priority setting approach, the resultant rating set for the bridge has been evaluated based on the specified ratings and importance factors for all the elements of the bridge. Then the defuzzified value of the resultant rating fuzzy set becomes the rating value for the bridge as a whole. It is argued that the methodology presented in this paper would help the decision makers/bridge inspectors immensely.  相似文献   

8.
Damage to bridge crossings during flood events endangers the lives of the traveling public and causes costly disruptions to traffic flow. The most common causes of bridge collapse are scouring of the streambed and banks and erosion of highway embankments. This study couples a synthetic river flow simulation technique with a scour model for cohesive soils and determines the expected scour depth for a given lifetime of the bridge. A fractionally differenced autoregressive integrated moving average model generates synthetic streamflow sequences of the same length as the expected lifetime of the bridge. The scour model predicts the progression of scour depth through time in a multilayered soil. The model is used to determine the scour depth associated with different replicates of the synthetic flow sequences of the same length as the lifetime of the bridge. The probability distribution of scour depth is estimated by repeating this simulation procedure over a number of independent realizations of streamflow series for a given life of the bridge. This approach provides a framework for the probabilistic design and risk analysis of bridge foundations subjected to scour.  相似文献   

9.
During a flood, a bridge may be partially or entirely submerged by the flow and the subsequent loading of fluid plays a major role in assessing the vulnerability of the structure. We have performed laboratory experiments to quantify the hydrodynamic loading on a bridge deck with rectangular cross section. We measured the time-varying hydrodynamic forces acting on the obstacle for various submergences and Deck Froude numbers. The experimental results have been analyzed via dimensional analysis and relationships between time-averaged force coefficients (drag, lift, and moment coefficients), the Deck Froude number and geometrical parameters of the problem are discussed and compared against relevant literature. Due to the presence of a free surface, force coefficients can be either larger (by more than a factor of 2) or lower than the corresponding values of the unbounded domain. The experimental drag coefficients are then compared with the results obtained by the momentum equation.  相似文献   

10.
Preliminary Assessment and Rating of Stream Channel Stability near Bridges   总被引:2,自引:0,他引:2  
The primary cause of bridge failure in the United States is scour and channel instability around the bridge foundations. The ability to assess channel stability in the vicinity of bridges is needed to alert engineers to possible unstable conditions at the bridge foundations, to design stable road crossings, and to mitigate against erosion at those structures. This information is valuable for stream stabilization projects as well, particularly for cases where the reach to be restored includes a bridge. However, a systematic methodology for rapidly assessing channel stability that is applicable at bridges located in the various regions of the country does not currently exist. In this study, an assessment method for the preliminary documentation and rating of channel stability near bridges was developed, based on prior stability assessment methods as well as observations at bridges in 13 physiographic regions of the continental United States. This method provides an assessment of channel stability conditions as they affect bridge foundations. It is intended for a quick assessment of conditions for the purpose of documenting conditions at bridges and for judging whether more extensive geomorphic studies or complete hydraulic and sediment transport analyses are needed to assess the potential for adverse conditions developing at a particular bridge in the future.  相似文献   

11.
Spur Failure in River Engineering   总被引:1,自引:0,他引:1  
Spurs are river engineering elements used to protect river banks from erosion and to concentrate flow to the river axis. Today, spurs are also employed for promoting environmental conditions along a river bank. These elements are characterized by a large variety of geometrical parameters, of which none is definitely fixed. Based on a preliminary study that identified optimum spur arrangements in a straight river reach the present research project adds to the protection of spurs by riprap. The first two spurs are demonstrated to require a suitable riprap for promoting nearly uniform scour conditions along the entire spur reach. This research investigated the effects of a variety of parameters on spur flow, notably spur length, spur spacing, spur height plus the diameter and the number of riprap rows, along with the main hydraulic and granulometric parameters. Design equations were established based on a large experimental campaign to predict riprap failure in terms of the previous set of variables. The failure modes are described along with a novel failure mechanism. The paper ends with a set of limitations allowing for the application of these results in river engineering.  相似文献   

12.
The Gupo Bridge crosses the Nakdong River near the city of Busan, South Korea. During Typhoon Maemi in 2003, the old Gupo Bridge collapsed due to excessive pier scour. More recently, the highway construction on the left-bank floodplain required right-bank channel widening to restore the channel flood-carrying capacity. This 7?m deep floodplain excavation is expected to cause significant local scour around the 8–10?m wide and 3?m thick spread footings of Piers 11 and 12 of the Subway Bridge and Piers 15 and 16 of the Gupo Bridge. Three design options are examined for retrofitting floodplain bridge piers with massive spread footings. A solution with sheet piles and riprap was recommended in 2006 as the most appropriate design, but Plan III with a conical riprap structure around the footings was ultimately constructed in 2007 for economic reasons. Laboratory experiments also highlight the need to place gravel and synthetic filters under the designed riprap.  相似文献   

13.
The 1995 Hyogo-ken Nanbu (Kobe), Japan earthquake provided the world’s first experience with earthquake damage to new long-span bridges designed to 1990s seismic standards. This paper reviews damage and describes techniques used to repair three major steel bridges along the Wangan route (Bayshore route) in Kobe—the 885 m Higashi-Kobe Bridge, the 217 m Rokko Island Bridge, and the 252 m Nishinomiya Port Bridge. These bridges, in service for less than three years, were essential components in the highway transportation system in the Kobe region. Extremely large ground motions, and failure of bearings, connections, and seismic restrainers were principal contributors to the damage sustained by these bridges. Repairs utilized heavy-lift floating cranes (up to 4,100 ton capacity) and various jacks to stabilize the structures and to realign spans. In one case, reconstruction of a collapsed span was required, with lifting weight a prime concern. Significant constraints on the repair included confined working space and requirements for maintaining maritime navigational clearances. The closure times for the repair of the bridges ranged from three to nine months.  相似文献   

14.
Long-Term Wireless Structural Health Monitoring of the Ferriby Road Bridge   总被引:2,自引:0,他引:2  
As part of an effective bridge management system, sensor networks can provide data to support both inspection and assessment. Wireless sensor networks (WSNs) have the potential to offer significant advantages over traditional wired monitoring systems in terms of sensor, cabling, and installation costs as well as expandability. However, there are drawbacks with WSNs relating to power, data bandwidth, and robustness. To evaluate the potential of WSNs for use in bridge management, a network of seven sensor nodes was installed on the Ferriby Road Bridge, a three-span reinforced concrete bridge. Three displacement transducer nodes were placed across cracks on the soffit of the bridge to measure the change in crack width. Three inclinometer sensor nodes were mounted on two of the elastomeric bearing pads to measure the change in inclination of the bearing pads while a final node monitored temperature in the box that contained the gateway. The installation of the WSN is discussed and data from this network is analyzed. Finally, the use of sensor networks to support inspection and assessment is discussed.  相似文献   

15.
Results are presented from laboratory experiments to investigate the effectiveness of bed sills as countermeasures against local scouring at a smooth circular bridge pier, for flow conditions near the threshold of uniform sediment motion. The bed sill was located downstream of the pier, and its effectiveness with the distance between pier and sill was evaluated. The dependence of the scour depth on different dimensionless groups was defined. The results showed that a bed sill placed at a short distance downstream of the pier reduces the scour depth, area, and volume. In particular, the smaller the distance between the two structures, the larger the effectiveness of the countermeasure. The bed sill seems to take effect some time after the beginning of the test, as the scour hole downstream of the bridge pier develops sufficiently and interacts with the countermeasure.  相似文献   

16.
Results of a recent bridge inventory evaluation indicated that about 50% of Turkish highway bridges have more than 30° of skew angle and can be classified as irregular bridges. During the recent major earthquake in Turkey, multisimple-span bridges with continuous decks and link slabs performed well even though these bridges were in the vicinity of the fault line. This study aims to evaluate the improvements in seismic response of skew bridges in terms of forces and displacements when link slabs are added as a retrofit tool. A series of elastic dynamic analyses and nonlinear time history analyses were conducted to investigate the seismic response of various standard highway bridges with different span lengths and skew angles. A new reinforcement design for edge zones of link slabs is proposed for bridges located in high seismic zones. In practice, link slabs can be implemented easily during a regular redecking of a bridge.  相似文献   

17.
A probabilistic approach is proposed to help select the most suitable nondestructive inspection (NDI) technique and associated optimal schedule for fracture-critical member/detail fatigue inspections on a specific steel bridge. The probability of detection (POD) function for the NDI technique, which is a measure of the detection accuracy, is employed. By combining probability calculations based on use of the POD function together with numerical Monte Carlo simulations of the crack propagation of the fracture-critical detail, a cost function is formulated that includes the expected cost of inspections and failure resulting from the chosen NDI technique and alternative inspection schedules. In summary, the selection of an NDI technique with an associated inspection schedule for fracture-critical inspections is formulated as an optimization problem that can guarantee minimum total cost. The inspection frequency is determined as part of the optimization that utilizes appropriate constraints on inspection intervals and a minimum acceptable (target) structural safety level. A case study for a box girder bridge is presented to demonstrate the application of the proposed probabilistic method.  相似文献   

18.
Stick models are widely employed in the dynamic analysis of bridges when only approximate results are desired or when detailed models are difficult or time-consuming to construct. Although the use of stick models for regular bridges has been validated by various researchers, the application of such models to skew highway bridges continues to present challenges. The conventional single-beam stick model used to represent the bridge deck often fails to capture certain predominant vibration modes that are important in obtaining the true dynamic response of the bridge. In this paper, a refined stick model is proposed for the preliminary dynamic analysis of skew bridges. The model utilizes a dual-beam stick representation of the bridge deck. The validity of the model is established by comparing results obtained from the proposed model with numerical solutions obtained for skew plates and a skew bridge. It is shown that this dual-beam stick model is superior to the conventional single-beam model in estimating the natural vibration frequencies and in predicting the predominant vibration modes of the bridge. Because of its simplicity and relative accuracy, this model is recommended for the preliminary dynamic analysis of skew highway bridges.  相似文献   

19.
The majority of all built movable bridges can be grouped into one of the following three structural systems: Bascule bridges, swing bridges, and lift bridges. Many examples for each of these three types of bridges exist and have been documented in the existing literature. The kinematics of these three traditional bridge systems are simple at first sight but nevertheless are important for conceptual design and calculation. Moreover, some recently built or proposed movable pedestrian bridges in Europe differ distinctly from the three aforementioned traditional types of movable bridges. A range of these new ideas is presented here in the context of their kinematic behavior. The writers believe that the understanding of kinematic principles, which are applied regularly in other engineering disciplines, will assist with the development of further new ideas for movable bridges. This paper endeavours to present some such principles and illustrate the application to the given topic.  相似文献   

20.
The results from a parametric study on the impact factors for 180 curved continuous composite multiple-box girder bridges are presented. Expressions for the impact factors for tangential flexural stresses, deflection, shear forces and reactions are deduced for AASHTO truck loading. The finite-element method was utilized to model the bridges as three-dimensional structures. The vehicle axle used in the analysis was simulated as a pair of concentrated forces moving along the concrete deck in a circumferential path with a constant speed. The effects of bridge configurations, loading positions, and vehicle speed on the impact factors were examined. Bridge configurations included span length, span-to-radius of curvature ratio, number of lanes, and number of boxes. The effect of the mass of the vehicle on the dynamic response of the bridges is also investigated. The data generated from the parametric study and the deduced expressions for the impact factors would enable bridge engineers to design curved continuous composite multiple-box girder bridges more reliably and economically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号