首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To be able to tailor and optimize the physical properties of oleogels for various food applications, more information is needed to understand how different gelators interact. Therefore, the objectives of this study were to evaluate the interactions between binary mixtures of beeswax (BW), candelilla wax (CLW), and sunflower wax (SFW) in pure form as well as in 5% wax oleogels made with soybean oil, in terms of their crystallization and melting properties, crystal morphology, solid fat content, and gel firmness. CLW:BW mixtures had eutectic melting properties, and oleogels from these mixtures with 40:60 to 90:10 CLW:BW were firmer compared to oleogels made with one wax. The main components in SFW and BW appeared to cocrystallize or crystallize at the same temperature, but nonlinear changes in melting point and solid fat content profile of oleogels prepared with the mixed waxes indicated that SFW dominated oleogel formation. In addition, oleogels prepared with mixtures of SFW and BW had lower firmness compared to oleogels prepared with one wax, indicating an incompatibility between the two waxes. The main wax components in SFW and CLW never cocrystallized, and low levels of CLW appeared to prevent SFW from forming a crystalline platelet network. This resulted in low firmness of oleogels made from mixtures of 90:10 to 60:40 SFW:CLW compared to oleogels prepared with one wax. However, the firmest oleogels of all mixtures were made from 10:90 SFW:CLW. Changes in gel firmness and melting properties with mixed wax oleogels were likely to be due to changes observed in the crystal size and morphology. In addition, the firmest gels were shown to result from mixtures that were predicted to have >40% hydrocarbon content, and a high hydrocarbon to wax ester ratio, but minor components such as free fatty acids and fatty alcohols may have also influenced firmness.  相似文献   

2.
Oleogels were prepared with 5% wax in soybean oil using mixtures of beeswax (BW) and candelilla wax (CLW) with ratios of 10:90, 30:70, 50:50, and 60:40 BW:CLW, and the same series where 10% of the total wax was substituted with sunflower wax (SFW). The hypothesis that SFW would increase the firmness of the oleogels without affecting the melting properties was tested. Firmness of one-wax oleogels decreased from SFW > CLW > BW. Oleogels with 50:50 BW:CLW and 60:40 BLW:CLW had equal firmness to pure 5% SFW oleogels. SFW significantly increased oleogel firmness and reduced the softening that occurred between 4°C and 22°C. Increased firmness was also found with rice bran wax and behenyl-behenate (C44) addition, but not with wax esters with chain lengths ranging from 30 to 40 carbons (C30 to C40). By differential scanning calorimetry, SFW significantly decreased the melting point of oleogels with 10:90 and 30:70 BW:CLW mixtures but significantly increased the melting point of those with 50:50 and 60:40 BW:CLW mixtures. However, the solid fat content melting curves were not significantly influenced by SFW addition. These results indicate that mixed wax oleogels had greater hardness and elasticity, and that the long chain wax esters contributed by SFW helped to improve the strength of oleogels without negatively affecting their melting properties.  相似文献   

3.
The objective of this study was to investigate the phase behavior of binary blends of four waxes—beeswax (BW), paraffin wax (PW), sunflower wax (SFW), and rice bran wax (RBW)—using differential scanning calorimetry (DSC) and polarized light microscopy (PLM). Blends of BW/PW, RBW/PW, SFW/PW, SFW/RBW, SFW/BW, and RBW/BW were crystallized in a DSC, and their melting behavior was used to build binary phase diagrams. The microstructure of the crystalline networks formed in these blends was analyzed using PLM. BW/PW, SFW/PW, SFW/BW, and RBW/BW blends showed eutectic phase behavior, while RBW/SFW showed continuous solid solution and the RBW/PW blend showed monotectic behavior. Results from the box‐counting fractal dimension (Db) measurement of crystal morphology showed higher Db values for the 20 and 80 % wax blends, irrespective of crystallization temperature or wax type. Db values of single waxes decrease as temperature increases.  相似文献   

4.
Organogels obtained from plant wax and soybean oil were tested for their suitability for incorporation into margarine. Sunflower wax, rice bran wax and candelilla wax were evaluated. Candelilla wax showed phase separation after making the emulsion with the formulation used in this study. Rice bran wax showed relatively good firmness with the organogel, but dramatically lowered firmness for a margarine sample. Sunflower wax showed the greatest firmness for organogel and the margarine samples among the three plant waxes tested in this study. Firmness of the margarine containing 2–6 % sunflower wax in soybean oil was similar to that of margarine containing 18–30 % hydrogenated soybean oil in soybean oil. The firmness of commercial spread could be achieved with about 2 % sunflower wax and that of commercial margarine could be achieved with about 10 % of sunflower wax in the margarine formulation. Dropping point, DSC and solid fat content of the new margarine containing 2–6 % sunflower wax showed a higher melting point than commercial margarine and spreads.  相似文献   

5.
A chromatographic method is described to measure the crystallizable wax content of crude and refined sunflower oil. It can also be applied to any other vegetable oil. The preparative liquid chromatography step on a glass column containing a silica gel adsorbent superimposed upon a silver nitrate-impregnated silica gel support is used to isolate a wax fraction which is then analyzed by gas chromatography. The recovered wax fraction contains, in addition to the crystallizable waxes, hydrocarbons and other compounds with gas chromatographic retention times corresponding to waxes with chain lengths C34−C42. These compounds are short-chain saturated waxes in fruit oils, such as grapeseed and pomace. In seed oils such as sunflower, soybean or peanut, the compounds initially referred to as “soluble esters” are identified as monounsaturated waxes, esters of long-chain saturated fatty acids, and a monounsaturated alcohol, mainly eicosenoic alcohol. Such waxes are absent from corn or rice bran oils.  相似文献   

6.
The functional benefits provided by flixweed seed oil (FSO) warrant its application as an alternative to current commercial stabilizers used in peanut butter. The extracted FSO was fully hydrogenated and added to the lab‐made peanut butter in quantities of 1, 1.5, and 2 % (w/w). Samples were stored at 4, 21, and 40 °C, and tested at 2, 6, 16, and 24 weeks for oil separation tests and texture characteristics including hardness, adhesiveness, cohesiveness, and gumminess. Fully hydrogenated flixweed seed oil (FHFO) improved the oil holding capacity of peanut butter at 1, 1.5 and 2 % (w/w). Peanut butter containing FHFO, at a quantity of 2 % (w/w), showed the least oil separation and had comparable or less oil separation than the sample containing 1.5 % commercial stabilizer. Other physical properties were comparable between these two samples.  相似文献   

7.
In this paper, the structuring of liquid oils, also known as oleogelation, is systematically investigated for the first time using a quasi-quaternary mixing system approach. Native waxes with different quantities of wax esters (WE), n-alkanes (hydrocarbons (HC)), fatty acids (FA), and fatty alcohols (FaOH) are applied in mixtures with hydrolyzed waxes to systematically change the composition. Hydrolyzed waxes contain high levels of FA and FaOH. The model systems are investigated on microscopic level (brightfield light microscopy (BFM), cryogenic scanning electron microscopy (cryo-SEM)) as well as on their macroscopic properties (rheology, gel hardness) and calorimetric behavior (differential scanning calorimetry (DSC)). It is found that sunflower wax (SFW)-based gels (12% structurant) become less hard on any admixture. Beeswax (BW)-based gels show significant increases in hardness when 25% and 50% (w/w) hydrolyzate are admixed. This could be related to stepwise crystallization. Further analysis reveals that the dissolution/melting behavior of the wax ester mixtures can be surprisingly well described as ideal solubility of a single pseudocomponent. The approach to unravel the individual contributions of the different species present in waxes is successful and marks a first step to better understand the systematic of wax functionality as oleogelators. Practical Application: The substitution of hardstock fats in structured oil phases is of interest for two reasons. The improved nutritional profile oleogels offer are beneficial for public health while the elimination of palm oil based ingredients appears to be a general public desire. Among the technical solutions for non-TAG oil structuring waxes are very promising. This is primarily due to their availability, prior consumption, potentially low cost for functionality. Currently waxes are technically and scientifically wrongly treated as single components. In order to better utilize the potential of waxes and design future sourcing strategies it is necessary to understand the wax functionality at a compositional/molecular level. This contribution marks the first step into this direction by considering classes of molecules with respect to their contribution to functionality. This understanding is considered as a key for future compositional design.  相似文献   

8.
In an effort to develop alternatives for harmful trans fats produced by partial hydrogenation of vegetable oils, oleogels of high‐stearic soybean (A6 and MM106) oils were prepared with sunflower wax (SW) as the oleogelator. Oleogels of high‐stearic oils did not have greater firmness when compared to regular soybean oil (SBO) at room temperature. However, the firmness of high‐stearic oil oleogels at 4 °C sharply increased due to the high content of stearic acid. High‐stearic acid SBO had more polar compounds than the regular SBO. Polar compounds in oil inversely affected the firmness of oleogels. Differential scanning calorimetry showed that wax crystals facilitated nucleation of solid fats of high‐stearic oils during cooling. Polar compounds did not affect the melting and crystallization behavior of wax. Solid fat content (SFC) showed that polar compounds in oil and wax interfered with crystallization of solid fats. Linear viscoelastic properties of 7% SW oleogels of three oils reflected well the SFC values while they did not correlate well with the firmness of oleogels. Phase‐contrast microscopy showed that the wax crystal morphology was slightly influenced by solid fats in the high‐steric SBO, A6.  相似文献   

9.
Oleogels have been studied in the past decade due to their potential to replace saturated fat in foods. Oleogelators have been mostly studied alone or in binary systems. Sometimes a single oleogelator cannot achieve all the technological properties necessary for a specific food application. Thus, the aim of this work was to investigate the interaction between candelilla wax (CLX), monoacylglycerols (MAG), and a fully hydrogenated oil (hardfat [HF]) in soybean and high‐oleic sunflower oils and to evaluate their physical properties. The concentration of the total oleogelator was between 5% and 10%, from pure CLX (5%), sample OP, up to many combinations of MAG, HF, and CLX samples O1, O2, O3, O4, O5, and O6. Samples were evaluated according to their microstructure, melting properties, rheological behavior, hardness, oil‐binding capacity (OBC), and thermal stability. Results showed that the addition of MAG and HF to CLX created a softer gel but improved its rheological properties. Changes in the physical properties were related to the various proportions of CLX, MAG, and HF rather than the overall concentration of structuring agents. For example, for a total concentration of 5% of the structuring agent, a decrease in the CLX concentration from 5% to 3% and the addition of HF and MAG resulted in a softer crystalline network. Increasing the overall concentration of oleogelators by increasing the amount of HF and/or MAG and maintaining the concentration of the CLX constant did not improve the hardness of the gel. This study showed that at least 3% of CLX must be added to the system to obtain a semisolid material independently of the amount of MAG and/or HF added.  相似文献   

10.
Wax composition of sunflower seed oils   总被引:1,自引:3,他引:1  
Waxes are natural components of sunflower oils, consisting mainly of esters of FA with fatty alcohols, that are partially removed in the winterization process during oil refining. The wax composition of sunflower seed as well as the influence of processing on the oil wax concentration was studied using capillary GLC. Sunflower oils obtained by solvent extraction from whole seed, dehulled seed, and seed hulls were analyzed and compared with commercial crude and refined oils. The main components of crude sunflower oil waxes were esters having carbon atom numbers between 36 and 48, with a high concentration in the C40−C42 fraction. Extracted oils showed higher concentrations of waxes than those obtained by pressing, especially in the higher M.W. fraction, but the wax content was not affected significantly by water degumming. The hull contribution to the sunflower oil wax content was higher than 40 wt%, resulting in 75 wt % in the crystallized fraction. The oil wax content could be reduced appreciably by hexane washing or partial dehulling of the seed. Waxes in dewaxed and refined sunflower oils were mainly constituted by esters containing fewer than 42 carbon atoms, indicating that these were mostly soluble and remained in the oil after processing.  相似文献   

11.
The effects of minor components in crude rice bran oil (RBO) including free fatty acids (FFA), rice bran wax (RBW), γ-oryzanol, and long-chain fatty alcohols (LCFA), on alkali refining losses were determined. Refined palm oil (PO), soybean oil (SBO) and sunflower oil (SFO) were used as oil models to which minor component present in RBO were added. Refining losses of all model oils were linearly related to the amount of FFA incorporated. At 6.8% FFA, the refining losses of all the model oils were between 13.16 and 13.42%. When <1.0% of LCFA, RBW and γ-oryzanol were added to the model oils (with 6.8% FFA), the refining losses were approximately the same, however, with higher amounts of LCFA greatly increased refining losses. At 3% LCFA, the refining losses of all the model oils were as high as 69.43–78.75%, whereas the losses of oils containing 3% RBW and γ-oryzanol were 33.46–45.01% and 17.82–20.45%, respectively.  相似文献   

12.
In this study, two natural waxes, beeswax (BW) and sunflower wax (SFW), are combined with their hydrolyzed variants to deliberately alter the waxes’ composition. The properties of the produced oleogels with different wax inclusion levels (4%, 8%, 12%, and 16% w/w) are investigated after defined intervals (2 days, 7 days, 3 weeks, and 3 months). To do so, the gels are monitored via penetrometry, microscopy, and calorimetry. Although the gels do not show any significant difference during storage in the micrographs, the calorimetric and firmness data reveal meaningful results. The heat of dissolution increases in every system investigated, indicating post-crystallization processes. Due to different solubilities of wax components, the critical gelling concentration is determined and the solid wax content is retrieved to further address the structure efficiency (S.E.). It is demonstrated that although the quantity of solids over time increases, the scaffolding effectiveness decreases in most cases. Only SFW, most likely due to sintering, shows an increase in S.E. over the storage time. Identified synergistic effects in BW and hydrolyzate mixtures decrease with increasing storage time. This work aims to contribute to a better understanding of the behavior of wax-based oleogels upon storage. Practical Applications: Although much is known about the gel properties of wax-based oleogels at short-term, the behavior over the storage period remains largely unresolved. However, this behavior is immensely important for a real application in fast and slow moving consumer goods. After all, products should always have the same consumer-relevant properties when stored at variable time frames. This applies to both food and pharmaceutical products. Knowledge of the behavior of wax-based oleogels in terms of a time-dependent change can help to choose a targeted product design and ensure product quality and consumer satisfaction.  相似文献   

13.
Organogel Formation of Soybean Oil with Waxes   总被引:2,自引:1,他引:1  
Many waxes including plant waxes and animal waxes were evaluated for the gelation ability toward soybean oil (SBO) and compared with hydrogenated vegetable oils, petroleum waxes and commercial non-edible gelling agents to understand factors affecting the gelation ability of a gelator. Sunflower wax (SW) showed the most promising results and all SW samples from three different suppliers could make a gel with concentrations as low as 0.5 wt%. Candelilla wax and rice bran wax also showed good gelation properties, which, however, varied with different suppliers. Gelation ability of a wax is significantly dependant on its purity and detailed composition. A wax ester with longer alkyl chains has significantly better gelation ability toward SBO than that with shorter alkyl chains indicating that the chain length of a component in a wax such as wax ester is an important factor for gelation ability. The SW–SBO organogel showed increased melting point with increased SW content, showing the melting point range from about 47 to 65 °C with 0.5–10 wt% SW. The effects of cooling rate on crystal size and firmness of a gel were investigated. The dependence of firmness on cooling rate was so significant that the desired texture of an organogel could be achieved by controlling the cooling rate in addition to controlling the amount of gelling agent. This research reveals that a small amount of food grade plant waxes including SW may replace a large amount of the hardstock containing trans-fat or saturated fat.  相似文献   

14.
High‐oleic soybean oil is chemically functionalized in order to mimic the structure and physical properties of hydrogenated castor oil (HCO). The resulting wax‐like material is evaluated for use as an alternative to other commercial wax coatings for the postharvest treatment of fresh citrus fruit. The racemic nature of the material inhibits ordered crystalline arrangement and negatively affects its relative crystallinity (17.7%), hardness (0.59 ± 0.04 mm?1), and melting profile (44–46 °C), with respect to HCO oil (37.7%, 5.33 ± 0.01 mm?1, 83–87 °C). Nevertheless, compounding the new material with carnauba wax (CAR) imparts a very attractive gloss and prevents moisture loss significantly better than polyethylene, shellac, and CAR‐based coatings. Compounding the hydroxy‐functionalized high‐oleic soybean wax may potentially reduce dependence on imported CAR and other ingredients used in citrus coating emulsion formulations. Practical Applications: The soybean oil‐derived material described in this contribution provides two key performance characteristics desired by citrus growers and packing houses: an efficient barrier to moisture loss and an attractive shine. The synthesis of the hydroxy‐wax is facile and mild, and the materials can be readily formulated into emulsions as required for fruit coating applications. Use of the formulated coating can be extended to other agricultural commodities such as avocados, melons, and stone fruit.  相似文献   

15.
Oleogelation is emerging as one of the most exigent oil structuring technique. The main objective of this study was to formulate and characterize rice bran/sunflower wax-based oleogels using eight refined food grade oils such as sunflower oil, mustard oil, soybean oil, sesame oil, groundnut oil, rice bran oil, palm oil, and coconut oil. Stability and properties of these oleogels with respect to oil unsaturation and wax composition were explored. Sunflower wax exhibited excellent gelation ability even at 1%–1.5% (w/v) concentration compared to rice bran wax (8%–10% w/v). As the oleogelator concentration increased, peak melting temperature also increased with increase in strength of oleogels as per rheological studies. X-ray diffraction and morphological studies revealed that oleogel microstructure has major influence of wax composition only. Sunflower wax oleogels unveiled rapid crystal formation with maximum oil binding capacity of 99.46% in highly unsaturated sunflower oil with maximum polyunsaturated fatty acid content. Further, the applicability of this wax based oleogels as solid fat substitute in marketed butter products was also scrutinized. The lowest value of solid fat content (SFC) in oleogel was 0.20% at 25°C, resembling closely with the marketed butter products. With increase in oil unsaturation, oleogels displayed remarkable reduction in SFC. Depending upon prerequisite, oleogel properties can be modulated by tuning wax type and oil unsaturation. In conclusion, this wax-based oleogel can be used as solid fat substitute in food products with extensive applications in other fields too.  相似文献   

16.
Lennart Svensson 《Lipids》1983,18(3):171-178
The influence of dietary partially hydrogenated marine oils on distribution of phospholipid fatty acids in rat liver microsomes was studied with particular reference to the metabolism of linoleic acid. Five groups of weanling rats were fed diets containing 20% (w/w) peanut oil (PO), partially hydrogenated peanut oil (HPO), partially hydrogenated Norwegian capelin oil (HCO), partially hydrogenated herring oil (HHO), and rapeseed oil (RSO) for 10 weeks. The partially hydrogenated oils were supplemented with linoleic acid corresponding to 4.6 cal % in the diets. Accumulation of linoleic acid and reduced amount of total linoleic acid metabolites were observed in liver microsomal phospholipids from rats fed partially hydrogenated oils as compared to PO feeding. The most striking effects on the distribution of ω6-polyunsaturated fatty acids was obtained after feeding HHO, a marine oil with a moderate content oftrans fatty acids in comparison with HPO but rich in isomers of eicosenoic and docosenoic acids. Liver microsomal Δ6-as well as Δ6-desaturase activities as measured in vitro were reduced in rats kept on HHO as compared to PO dietary treatment. The results obtained suggest that the dietary influence of partially hydrogenated marine oils on the metabolism of linoleic acid might be better related to the intake of isomeric eicosenoic and docosenoic acids than to the total intake oftrans fatty acids.  相似文献   

17.
Summary Diglycerides of the fat-forming acids yield, on esterification with succinic, adipie, and other shortchain dibasic acids, a poteutially useful series of compounds ranging from hard, high-melting waxes to viscous oils which will not crystallize. A number of the properties of these compounds were determined in carlier investigations. In the present investigation additional properties of the 1,3-diolein and 1,3-distearin esters of succinic and adipic acids were determined. Surface and interfacial tensions were measured and found to be similar to those of cottonseed oil. The smoke points also were found to be similar to that of cottonseed oil. The ability of the compounds to thicken cottouseed oil was measured and found to be somewhat better than that of highly hydrogenated cottonseed oil at levels above about 12%, and the mixtures were relatively resistant to fat leakage. In hardness the distearin esters of succinic and adipic acid were comparable to carnauba wax and were over twice as hard as highly hydrogenated cottonseed oil. Permeability to water vapor was found to be greater than that of highly hydrogenated cottonseed oil and carnauba wax and about equal to that of cocoa butter. Presented at the 33rd Fall Meeting, American Oil Chemists' Society, Los Angeles, Calif., September 28–30, 1959. One of the laboratories of the Southern Utilization Research and Development Division, Agricultural Research Service, U. S. Department of Agriculture.  相似文献   

18.
In this study, virgin olive oil (VOO) organogels were produced with beeswax (BW) and sunflower wax (SW) and enriched with β‐carotene, vitamin D3 and E as well as aromatized with strawberry, banana, and butter aromas. The physicochemical, thermal, structural, and sensorial properties of the fresh organogel samples were determined. The peroxide values, antioxidant activities, firmness, and volatile compositions of the fresh samples and those stored for 3 months were also determined. The organogels were not only stable, uniform, and homogenous during the storage period but also the added components did not affect the organogel properties. The panel defined three appearance, four texture, three mouthfeel, four aroma, and four flavor terms to describe the organogels sensorially. Moreover, the added aroma (banana, strawberry, and diacetyl‐butter) components of the fresh and stored organogels were quantified by GC/MS‐SPME. In conclusion, these results demonstrated that beeswax and sunflower wax are very suitable to preserve the aromatic characteristics of these types of spreadable products.  相似文献   

19.
Partially hydrogenated soybean oil, referred to as soywax, is gaining attention as a renewable and biodegradable alternative to paraffin wax for use in candles. However, current soywax candles suffer from several problems, especially poor melting and solidification properties. Fully hydrogenated soybean oil exhibits improved melting properties but owing to its fragile texture, it is not yet acceptable in most candle applications. In the present work, KLXTM (a wax composed of fractionated hydrogenated soy and cottonseed oils) was used as a base material for candles, and the effects of additives such as hydrogenated palm oil (HPO), FFA, and paraffin on the textural and combustion properties were evaluated. Melting and solidification profiles of KLX were better than those of fully hydrogenated soy oil. Adding FFA improved the solidification properties of KLX candles. Adding paraffin improved the compressibility of the wax, while HPO addition decreased hardness and compressibility. Changing the candle diameter and/or wick size along with changing the wax composition resulted in candles with desirable quality attributes.  相似文献   

20.
A solvent-free synthesis method was developed for incorporating acetyl and hydroxy groups and long-chain fatty alcohol in fully hydrogenated soybean oil (FHSO) to produce a wax to be used as beeswax or paraffin substitutes in packaging and coatings. FHSO was reacted with stearyl alcohol and triacetin at 140–150 °C for 2 h, and the reaction was catalyzed by 0.018 wt% sodium methoxide. The addition of alcohol increased the reaction yield and the melting point of the final wax by 9 and 25 %, respectively, compared to the wax produced from the reaction of FHSO and triacetin alone. The effects of the ratio of stearyl alcohol and triacetin to FHSO on the textural properties of the modified soy wax were examined. The reaction of FHSO:stearyl alcohol:triacetin at a molar ratio of 9:7:15 produced a wax that was 1.2 and 2.4 times harder than beeswax and FHSO, respectively, but 1.7 times softer than a commercial grade paraffin wax. This modified soy wax comprised 75 % acetylated glycerol esters including diacetylmonoacylglycerides (31 %), monoacetylmono- (12 %) and diacylglycerides (32 %), and 25 % non-acetylated molecules including wax ester (14 %), and acylglycerides (11 %). The acetylated soy wax had high cohesiveness and did not break under compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号