首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical resistance tomography (ERT), which is a non-intrusive flow visualization technique, was used to investigate the solid–liquid mixing in an agitated tank equipped with a top-entering axial-flow impeller. The signals obtained from eight ERT planes were utilized to reconstruct the tomograms by using the linear back projection algorithm. The ERT measurements were correlated to solid concentration profiles by which the degree of homogeneity was quantified. In this study, the effect of important parameters such as impeller type (Lightnin A100, A200, A310, and A320 impellers), impeller speed (250–800 rpm), impeller off-bottom clearance (T/5–T/2, where T is the tank diameter), particle size (210–1500 μm), and solid concentration (5–30 wt%) on the degree of homogeneity were explored. The results showed that the degree of homogeneity in the solid–liquid mixing was improved with increasing the impeller speed. However, after reaching the maximum achievable homogeneity, further increase in impeller speed was not beneficial but might be detrimental. Hence, the measurement of the optimal impeller speed as a function of operating conditions and design parameters has vital role in achieving maximum homogeneity in a solid–liquid mixing system.  相似文献   

2.
The coupled CFD-E-model for multiphase micro-mixing was developed, and used to predict the micro-mixing effects on the parallel competing chemical reactions in semi-batch gas–liquid and solid–liquid stirred tanks. Based on the multiphase macro-flow field, the key parameters of the micro-mixing E-model were obtained with solving the Reynolds-averaged transport equations of mixture fraction and its variance at low computational costs. Compared with experimental data, the multiphase numerical method shows the satisfactory predicting ability. For the gas–liquid system, the segregated reaction zone is mainly near the feed point, and shrinks to the exit of feed-pipe when the feed position is closer to the impeller. Besides, surface feed requires more time to completely exhaust the added H+ solution than that of impeller region feed at the same operating condition. For the solid–liquid system, when the solid suspension cloud is formed at high solid holdups, the flow velocity in the clear liquid layer above the cloud is notably reduced and the reactions proceed slowly in this almost stagnant zone. Therefore, the segregation index in this case is larger than that in the dilute solid–liquid system.  相似文献   

3.
In this work, dilute suspensions of solid particles in stirred tanks are investigated by Particle Image Velocimetry measurements, which were specifically designed to determine the effects of the dispersed phase on mean velocity and turbulence levels of the continuous phase and the local solid–liquid slip velocity. In order to determine the effect of particle size and concentration, glass particles of narrow size distribution were selected; the particle content was increased stepwise up the maximum of 0.2 vol.%. Overall, moderate dampening of liquid turbulent fluctuations was found with the smaller particles, while turbulence enhancement was observed with the bigger ones. Continuous phase turbulence was found to affect the local map of the particle settling velocity, which was also discussed on the basis of a force balance analysis. The reduction of particle settling velocity due to free stream turbulence under specific conditions is confirmed.  相似文献   

4.
《Chemical engineering science》2001,56(21-22):6455-6462
The real-time cross-sectional distributions of the gas holdups in gas–liquid and gas–liquid–solid systems are measured using electrical capacitance tomography. For the gas–liquid system, air as the gas phase and both Norpar 15 (paraffin) and Paratherm as the liquid phases are used. Polystyrene beads whose permittivity is similar to that of Paratherm are used as the solid phase in the gas–liquid–solid system. The three-phase system is essentially a dielectrically two-phase system enabling measurement of the gas holdup in the gas–liquid–solid system independent of the other two phases. A new reconstruction algorithm based on a modified Hopfield dynamic neural network optimization technique developed by the authors is used to reconstruct the tomographic data to obtain the cross-sectional distribution of the gas holdup. The real-time flow structure and bubbles flow behavior in the two- and three-phase systems are discussed along with the effects of the gas velocity and the solid particles.  相似文献   

5.
The gassed power demand and volumetric mass transfer coefficient (kLa) were investigated in a fully baffled, dished-base stirred vessel with a diameter of 0.30 m agitated by five triple-impeller combinations. Six types of impellers (six-half-elliptical-blade disk turbine (HEDT), four-wide-blade hydrofoil impeller (WH) pumping down (D) and pumping up (U), parabolic-blade disk turbine (PDT), and CBY narrow blade (N) and wide blade (W)) were used to form five combinations identified by PDT + 2CBYN, PDT + 2CBYW, PDT + 2WHD, HEDT + 2WHD and HEDT + 2WHU, respectively. The results show that the relative power demand of HEDT+2WHU is higher than that of other four impeller combinations under all operating conditions. At low superficial gas velocity (uG), kLa differences among impeller combinations are not obvious. However, when uG is high, PDT+2WHD shows the best mass transfer performance and HEDT+2WHU shows the worst mass trans-fer performance under al operating conditions. At high uG and a given power input, the impel er combinations with high agitation speed and big projection cross-sectional area lead to relatively high values of kLa. Based on the experimental data, the regressed correlations of gassed power number with Froude number and gas flow number, and kLa with power consumption and superficial gas velocity are obtained for five different impeller combinations, which could be used as guidance for industrial design.  相似文献   

6.
《Chemical engineering science》2001,56(21-22):5871-5891
Some aspects of the fundamental characteristics of evaporative liquid jets in gas–liquid–solid flows are studied and some pertinent literature is reviewed. Specifically, two conditions for the solids concentration in the flow are considered, including the dilute phase condition as in pneumatic convey and the dense phase condition as in bubbling or turbulent fluidized beds. Comparisons of the fundamental behavior are made of the gas–solid flow with dispersed non-evaporative as well as with evaporative liquids.For dilute phase conditions, experiments and analyses are conducted to examine the individual phase motion and boundaries of the evaporative region and the jet. Effects of the solids loading and heat capacity, system temperature, gas flow velocity and liquid injection angle on the jet behavior in gas and gas–solid flows are discussed. For dense phase conditions, experiments are conducted to examine the minimum fluidization velocity and solids distribution across the bed under various gases and liquid flow velocities. The electric capacitance tomography is developed for the first time for three-phase real time imaging of the dense gas–solid flow with evaporative liquid jets. The images reflect significantly varied bubbling phenomenon compared to those in gas–solid fluidized beds without evaporative liquid jets.  相似文献   

7.
For understanding the monosodium aluminate hydrate crystallization from the supersaturated aluminate solution containing red mud as the leaching liquor of bauxite, the liquid–solid–solid dispersion of a simulant system, i.e. glycerite, red mud and sand, in a stirred reactor has been experimentally investigated as well as simulated using computational fluid dynamics model (CFD) for the first time. The computational model is based on the Eulerian multi-fluid model along with RNG kε turbulence model, where Syamlal–obrien-symmetric drag force model (Syamlal, 1987) of the inter-phase momentum transfer between two dispersed solid phases is taken into account. A good agreement is obtained between the experimental data of solid distributions and the simulation results in the flow fields of liquid–solid–solid as well as liquid–solid systems. The solid suspension qualities of both liquid–solid and liquid–solid–solid systems in the stirred reactors with and without draft tube were also studied in detail based on mixing time, the standard deviation of solid concentration proposed by Bohnet and Niesmak (1980), the flow pattern and power number. The influence of the interaction between two dispersed solid phases on the suspension of red mud is found significantly greater than that of sand. The holdup of sand below the impeller is considerably larger than that above the impeller and the red mud dispersion approaches homogeneous in the reactor. The mixing time of liquid–solid–solid suspension is longer than that of liquid–solid suspension under the same conditions, and the mixing times of both systems in the stirred reactor with draft tube are longer than that in the reactor without draft tube. Furthermore, the distributions of sand and red mud in the reactor with draft tube were found less homogeneous than those without draft tube in most cases.  相似文献   

8.
For better understanding and optimization of multiphase flow in miniaturized devices, micro-computed tomography (μCT) is a promising visualization tool, as it is nondestructive, three-dimensional, and offers a high spatial resolution. Today, computed tomography (CT) is a standard imaging technique. However, using CT in microfluidics is still challenging, since X-ray related artifacts, low phase contrast, and limited spatial resolution complicate the exact localization of interfaces. We apply μCT for the characterization of stationary interfaces in thin capillaries. The entire workflow for imaging stationary interfaces in capillaries, from image acquisition to the analysis of interfaces, is presented. Special emphasis is given to an in-house developed segmentation routine. For demonstration purposes, contact angles of water, liquid polydimethylsiloxane, and air in FEP, glass, and PMMA are determined and the influence of gravity on interface formation is discussed. This work comprises the first steps for a systematic 3D investigation of multiphase flows in capillaries using μCT.  相似文献   

9.
The gas–liquid–solid three-phase moving beds could supply a potential solution for multiphase reactions with catalyst easily deactivated, and the flow regimes in it were studied by optical method and pressure drop measurement. Results showed that taking the trickle flow as the initial flow regime, the flow channels were more obvious as the particle velocity increased. When the initial flow regimes were pulse flow and bubble flow respectively, the pulse-to-trickle and bubble-to-pulse flow transitions mainly occurred at moderate-to-high particle velocities (0.01–0.04 m s−1 under conditions used in this work). Moreover, the flow regime map in the three-phase moving bed was constructed and shown that the region of trickle flow increased and the region of bubble flow decreased. Finally, the application of three-phase moving beds was discussed, and it could be suitable for those reactions, which had to operate in the pulse flow, bubble flow, and transition zone.  相似文献   

10.
This paper presents the use of ultraviolet–visible spectroscopy (UV–Vis) spectroscopy in a slurry of particles, a packed bubble column, and a trickle bed to assess the changes in the state of an active component on the surface of the solid support. As a model system, insoluble pH indicators deposited on the particles and on a solid foam packing (used as the packing material in the packed bubble column and the trickle bed) are used which fluoresce different UV–Vis spectra according to the liquid pH. The experimental results indicate that for the slurry the UV–Vis spectra obtained from the moving particles can be used to characterize the state of the pH indicator and to determine the transition point. The UV–Vis spectra can also be used to characterize the concentration of particles. Bubbles in the packed bubble column result in disturbances in the UV–Vis spectra collected from the pH indicator adsorbed to the solid surface and this interference is removed successfully with a newly developed tolerance-and-averaging method. In the trickle bed the liquid film flowing over the solid surface does not disturb the UV–Vis spectra. An abrupt change in the state of the pH indicator is therefore observed successfully.  相似文献   

11.
12.
The multiphase flow in the solid-liquid tank stirred with a new structure of Intermig impeller was analyzed by computational fluid dynamics(CFD).The Eulerian multiphase model and standard k-ε turbulence model were adopted to simulate the fluid flow,turbulent kinetic energy distribution,mixing performance and power consumption in a stirred tank.The simulation results were also verified by the water model experiments,and good agreement was achieved.The solid-liquid mixing performances of Intermig impeller with different blade structures were compared in detail.The results show that the improved Intermig impeller not only enhances the solid mixing and suspension,but also saves more than 20% power compared with the standard one.The inner blades have relatively little influence on power and the best angle of inner blades is 45°,while the outer blades affect greatly the power consumption and the optimized value is 45°.  相似文献   

13.
In this paper, the real time, dynamic phenomena of the three-dimensional horizontal gas and gas/solid mixture jetting in a 0.3 m (12 in) bubbling gas–solid fluidized bed are reported. The instantaneous properties of the shape of the jets and volumetric solids holdup are qualified and quantified using the three-dimensional electrical capacitance volume tomography (ECVT) recently developed in the authors’ group. It is found that the horizontal gas jet is almost symmetric along the horizontal axis during its penetration. As the jet width expands, the total volume of the gas jet increases. A mechanistic model is also developed to account for the experimental results obtained in this study. Comparison of jet penetration length and width between the model prediction and ECVT experiment shows that both the maximum penetration length and the maximum width of the horizontal gas jet increase with the superficial gas velocity. When the horizontal gas jet coalesces with a bubble rising from the bottom distributor, it loses its symmetric shape and can easily penetrate into the bed. For the horizontal gas/solid mixture jet penetration in the bed, the tail of the jet at the nozzle shrinks and the jet loses its jet shape immediately when the jet reaches its maximum penetration length, which are different from the characteristics exhibited by the gas jet. The solids holdup in the core region of the gas/solid mixture jet is higher than that in the gas jet. The penetration length of the horizontal gas/solid mixture jet is also larger than that of the gas jet.  相似文献   

14.
Electrical capacitance tomography has been widely used to obtain key hydrodynamic parameters of gas–solid fluidized beds, which is normally realized by first reconstructing images and then by analyzing these images. This indirect approach is time-consuming and hence difficult for on-line monitoring. Meanwhile, considering recurrence of similar flow patterns in fluidized beds, most of these calculations are repetitive and should be avoided. Here, we develop a machine learning approach to address these problems. First, superficial gas velocity linear-increasing strategy is used to perform high-throughput experiments to collect a large amount of training samples. These samples are used to train the map from normalized capacitance measurements to key parameters that obtained by an iterative image reconstruction algorithm off-line. The trained model can then be used for on-line monitoring. Preliminary tests revealed that the trained models show good prediction and generality for the estimation of the overall solid concentration and the equivalent bubble diameter.  相似文献   

15.
Bubble size distribution (BSD) is relevant to the design of gas–liquid systems, as it determines the interfacial area available in heat and mass transfer processes. Although data on BSD in stirred aerated tanks are available, a systematic comparison of alternative modeling functions for these data is lacking. In this work, BSDs obtained in air–water dispersions in a stirred aerated tank with a Rushton turbine and BSDs available in the literature for similar systems were modeled by 14 empirical probability density functions (PDFs). It was found that both the distribution of Nukiyama–Tanasawa with three adjustable parameters and the Rosin–Rammler distribution with two adjustable parameters reasonably fit original and literature BSDs. It is also concluded that it is possible to correlate the PDF parameters with the power dissipated by the agitator in the liquid phase, allowing the BSD to be modeled with only two parameters in a range of dissipated power from 0.5 to 2.3?kW/m3. BSDs thus modeled provide good predictions of average bubble size.  相似文献   

16.
Particle image velocimetry techniques coupled with advanced image processing tools are receiving an increasing interest for measuring flow quantities and local bubble-size distributions in gas–liquid contactors.Aim of this work is that of providing a numerical procedure able to reconstruct local gas hold-up and specific interfacial area from images obtained by laser sheet illumination. A correction for measured quantities accounting for laser sheet thickness is proposed and tested by means of Monte Carlo simulations. The algorithms proposed are robust and independent of any measured parameters of the actual bubble size distribution.  相似文献   

17.
In a gas–solid fluidized bed with continuous hydrocarbon liquid spray, a volatile “cloudy zone” could be formed, defined as a dynamically steady liquid-affected zone, including droplets, wet particles, and the gas which passes through the zone. A new flow pattern with the dynamic coexistence of cloudy zone and non-cloudy zone (gas–solid zone), is accordingly established. The temperature, particle concentration, and particle velocity fields are measured in real-time via infrared thermography and particle imaging velocimetry, respectively. Results show that the area and range of central position of the cloudy zone illustrate a heavier fluctuant trend with the increasing velocity of liquid spray, and the main frequency of area fluctuation is close to that of the bubble rising. Moreover, the particle concentration and particle velocity in the cloudy zone are lower than those in the non-cloudy zone, breaking the conventional symmetrical distributions of hydrodynamic parameters of particles in a gas–solid fluidized bed.  相似文献   

18.
We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with the standard k–ε turbulence model. After validation of the local solid holdup by experiments,numerical predictions have been successfully used to explain the influences of impeller rotating speed,particle density, particle size, liquid viscosity and initial solid loading on the soli...  相似文献   

19.
Micromixing in reactors is typically characterized by chemical test reactions. A novel image-based measurement system of engulfment vortex (IMEV system) is developed to assess the micromixing efficiency. Over 2000 vortices were recognized from images captured under various experimental cases, and key frames for their formation, engulfment and dissipation were identified. Inspired by the engulfment model (i.e., E model), this work quantified the micromixing time and local turbulent energy dissipation rate with the vortex lifetimes. The micromixing time obtained through the IMEV method is comparable to its value estimated by the micromixing model and segregation index of the test reaction, with a deviation of less than 20%. In turbulent gas–liquid systems, bubbles play a dual role on the local micromixing due to frequent disturbance and phase interface limitation. To summarize, this work offers an alternative approach for micromixing studies and provides valuable insights into dispersed phase effects on the micromixing efficiency.  相似文献   

20.
We quantify the ability of the two-fluid Euler–Euler model to predict the overall gas hold-up during two-phase flow in vertical columns using a combination of experiments and simulations. Gas hold-up in a bubble column and gas hold-up in the less-frequently studied co-current flow are investigated. For homogeneous flow characterized by nearly uniform bubble size, Euler–Euler model predictions are within 10% of the experimental values for both modes of operation, if the bubble diameter supplied as input to the model is the average bubble diameter in the physical system. This also holds true for heterogeneous flow in bubble columns despite the presence of a broad distribution of bubble sizes, if turbulence and bubble swarm effects on momentum exchange between phases are properly accounted for. Swarm corrections adequate for bubble columns, are less successful for co-current heterogeneous flow, for which gas hold-up predictions are least accurate (average error of 22%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号