首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four platinum(IV) complexes, trans,trans-dichlorobis(N,N-dimethylglycinato)platinum(IV), trans,trans-[Pt(dmgly)2Cl2] (1) and trans,trans-dibromobis(N,N-dimethylglycinato)platinum (IV), trans,trans-[Pt(dmgly)2Br2] (2), as well as, trans,trans-dichlorobis(N-methylglycinato)platinum(IV), trans,trans-[Pt(sar)2Cl2] (3) and trans,trans-dibromobis(N-methylglycinato)platinum(IV), trans,trans-[Pt(sar)2Br2] (4) (with configuration index for all complexes OC-6-14), were synthesized and characterized by elemental analysis, infrared and 1H NMR spectroscopy. In the aim to assess the selectivity in the antitumor action of these complexes, the antiproliferative action of these compounds was determined to human adenocarcinoma HeLa cells; to human myelogenous leukemia K562 cells and to normal immunocompetent cells; i.e., on human PBMC. The details of the crystal structure synthesized trans,trans-[Pt(sar)2Br2] complex were also reported here. In the crystal structure of trans,trans-[Pt(sar)2Br2], the Pt(IV) ion had a deformed octahedral coordination with both N-methylglycinates and bromides bonded trans to one another and with the N-Pt-Br bond angles of 84.1(4) and 95.9(4)°. The trans,trans-[Pt(sar)2Br2] complex molecules form 2D-layers with multiple N-H?O and C-H?O hydrogen bonds.  相似文献   

2.
Syntheses of two novel ligand precursors O,O'-diisopropyl- (1a) and O,O'-diisobutyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate dihydrochloride monohydrate (1b) and the corresponding dichloroplatinum(II) (2a and 2b) and tetrachloroplatinum(IV) complexes (3a and 3b) are described here. The substances were characterized by IR, (1)H and (13)C spectroscopy and elemental analysis. Crystal structures were determined for 1a and the corresponding platinum(IV) complex, 3a. In vitro antiproliferative activity was determined against tumor cell lines: human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, rested and stimulated normal immunocompetent cells (human peripheral blood mononuclear PBMC cells) using KBR test (Kenacid Blue Dye binding test). The IC(50)(microM) values for the most active compound 3a were: 30.48+/-2.54; 12.26+/-2.60; 13.68+/-3.22; 80.18+/-24.07 and 71.30+/-21.70, respectively.  相似文献   

3.
The cytotoxicities of two platinum(IV) complexes of formula [PtX2(eddp)].nH2O (eddp=ethylenediamine-N,N'-di-3-propionate, X=chloro [I] or bromo [II], n=1 or 1.24) are reported. The complexes have been obtained by direct reaction of potassium hexahaloplatinate(IV) with H2eddp.2HCl followed by addition of a base (LiOH). The crystal and molecular structure has confirmed that the complex with bromo ligands, similarly to the complex with chloro ligands previously reported, has trans configuration of the halogens. In both the chloro and bromo complexes there appear to be intramolecular N-H...X interactions which account for a narrowing of the corresponding X-Pt-N angles below 90degrees. The trans isomer (configuration index OC-6-13, two nitrogens and two oxygens of eddp bound in the equatorial plane) is the only one obtained in the reaction of hexahaloplatinate(IV) with the eddp ligand while a similar reaction performed with ethylenediamine-N,N'-diacetate (edda) affords exclusively the symmetrical cis-isomer (configuration index OC-6-33, equatorial nitrogen and axial oxygen atoms of edda). The longer chain of the propionato groups (as compared to the acetato ones) is responsible for such a change in preferred configuration. NMR data have revealed a very large diastereotopic splitting of the propionato methylene protons to the nitrogens (0.88 ppm). The trans disposition of the halogen ligands in the compounds with eddp leads to deactivation of platinum(IV) complexes in comparison to those with edda having cis disposition of the leaving chlorides (human ovarian cancer cell line A2780, IC50 [muM] of 92.6 +/- 12 and 30.3 +/- 7.5 for [I] and [II], respectively).  相似文献   

4.
In this study, two Pt(II) and three Pt(IV) complexes with the structures of [PtL2Cl2] (1), [PtL2I2] (2), [PtL2Cl2(OH)2] (3), [PtL2Cl2(OCOCH3)2] (4), and [PtL2Cl4] (5) (L = benzimidazole as carrier ligand) were synthesized and evaluated for their in vitro antiproliferative activities against the human MCF-7, HeLa, and HEp-2 cancer cell lines. The influence of compounds 1–5 on the tertiary structure of DNA was determined by their ability to modify the electrophoretic mobility of the form I and II bands of pBR322 plasmid DNA. The inhibition of BamH1 restriction enzyme activity of compounds 1–5 was also determined. In general, it was found that compounds 1–5 were less active than cisplatin and carboplatin against MCF-7 and HeLa cell lines (except for 1, which was found to be more active than carboplatin against the MCF-7 cell line). Compounds 1 and 3 were found to be significantly more active than cisplatin and carboplatin against the HEp-2 cell line.  相似文献   

5.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

6.
The ligands 1,3-bis(3-pyridyl)benzene (1), 1,3-bis(4-pyridyl)benzene (2) and 1,3,5-tris(4-pyridyl)benzene (3) have been prepared by Stille coupling of 3- or 4-trimethylstannylpyridine with the appropriate bromoarene. Ligands 1 and 2 react with [M(OTf)2(dppp)] (M=Pd, Pt) to produce the dipalladium- or diplatinum-containing macrocycles [M2(μ-1)2(dppp)2](OTf)4 or [M2(μ-2)2(dppp)2](OTf)4. These have been characterized by NMR spectroscopy and mass spectrometry and, in the case of [Pd2(μ-1)2(dppp)2](OTf)4, by X-ray crystallography. The molecular structure of the [Pd2(μ-1)2(dppp)2]4+ cation reveals a shallow arrangement of the aromatic rings, with the palladium atoms lying above and below. The tridentate ligand 3 reacts with [Pd(OTf)2(dppp)] to produce a trimetallic species of the form [Pd33-3)2(dppp)3](OTf)6.  相似文献   

7.
In the present study, four Pt(II) complexes with 2-ethyl (1)/or benzyl (2)/or p-chlorobenzyl (3)/or 2-phenoxymethyl (4) benzimidazole carrier ligands were evaluated for their in vitro cytotoxic activities against the human HeLa cervix, oestrogen receptor-positive MCF-7 breast, and oestrogen receptor-negative MDA-MB 231 breast cancer cell lines. The plasmid DNA interactions and inhibition of the BamHI restriction enzyme activities of the complexes were also studied. Complex 3 was found to be more active than carboplatin for all examined cell lines and comparable with cisplatin, except for the HeLa cell line.  相似文献   

8.
[Pt(COD)Cl2] (1) reacts with PPh2(C6H4COOH) (2a,b,c), PPh2(C6H4COONa) (2d), PPh(C6H4COOH)2 (4b,c) and P(C6H4COOH)3 (6b,c) with formation of the corresponding complexes [Pt(L)2Cl2] (3a,b,c,d, 5b,c, 7b,c). Halide abstraction from 3a by Ag+ promotes coordination of the ortho-carboxylate function to platinum, yielding [ -2)}{PPh2(C6H4COOH-2)}Cl] (bd8) and [ovbar|{PPh2(C6H4COO-2)}2] (bd9). Reaction of 1 with CO and 2a or 2b gives [Pt(CO)(L)Cl2] (10a,b), wherea 1 and 2,3-bis(diphenylphosphino) maleic anhydride yields (bd12) and [Pt{Ph2PC(COOH)=C(COOMe)-PPh2}Cl2] (13). The 1H, 13C and 31P NMR spectra are reported and discussed. The X-ray structural analysis of 3b showed the compound to be monoclinic, space group P21/n, Z=4, with a=1038.5(3), B=1792.6(4), C=2311.5(4) pm, β=91.6(2)° and Dcalc=1.353 g cm−3. The structure was solved from 4832 observed reflections with F0 > 4 σ(F0) and refined to a final R value of 0.0743. The Pt atom is surrounded by two Cl and two P atoms in a square planar arrangement.  相似文献   

9.
Effects of various complexes of platinum (II) and platinum (IV) on activities of trypsin, alpha-chymotrypsin, and peroxidase were compared. The platinum (II) complexes were found to inhibit these enzymes, though with variable efficiency. The platinum (IV) complexes at concentrations < or = 0.2 mM efficiently inhibited peroxidase but had no effect on the proteases. An enzymatic assay was developed to measure the most effective peroxidase inhibitor (cisplatin) at concentrations of 5-50 microM in the presence of fivefold excess of its isomer (transplatin).  相似文献   

10.
Reactions of [PtMe3(bpy)(Me2CO)][BF4] (2) with the thionucleobases 2-thiouracil (s2Ura), 4-thiouracil (s4Ura) and 2,4-dithiouracil (s2s4Ura) resulted in the formation of complexes of the type [PtMe3(bpy)(L-κS)][BF4] (L = s2Ura, 3; s4Ura, 4; s2s4Ura, 5). The complexes were characterized by NMR spectroscopy (1H, 13C, 195Pt), IR spectroscopy as well as microanalyses. The coordination through the C4S groups (4, 5) was additionally confirmed by DFT calculations, where it was shown that these complexes [PtMe3(bpy)(L-κS4)]+ (L = s4Ura, s2s4Ura) are about 5.8 (4b) and 3.3 kcal/mol (5b), respectively, more stable than the respective complexes, having thiouracil ligands bound through the C2X groups (X = O, 4a; S, 5a). For [PtMe3(bpy)(s2Ura-κS2)][BF4] (3) no preferred coordination mode could be assigned solely based on DFT calculations. Analysis of NMR spectra showed the κS2 coordination. In vitro cytotoxic studies of complexes 3−5 on nine different cell lines (8505C, A253, FaDu, A431, A549, A2780, DLD-1, HCT-8, HT-29) revealed in most cases moderate activities. However, 3 and 5 showed significant activity towards A549 and A2780, respectively, possessing IC50 values comparable to those of cisplatin. Cell cycle perturbations and trypan blue exclusion test on cancer cell line A431 using [PtMe3(bpy)(s2s4Ura-κS4)][BF4] (5) showed induction of apoptotic cell death. Furthermore, the reaction of [PtMe3(OAc-κ2O,O′)(Me2CO)] (6) with 4-thiouracil yielded the dinuclear complex [(PtMe3)2(μ-s4Ura-H)2] (7), which has been characterized by microanalysis, NMR (1H, 13C, 195Pt) and IR spectroscopy as well as ESI mass spectrometry. X-ray diffraction analysis of crystals yielded in an isolated case exhibited the presence of a hexanuclear thiouracilato platinum(IV) complex, possessing each three different kinds of methyl platinum(IV) moieties and 4-thiouracilato ligands. This exhibited the ability of 4-thiouracil platinum(IV) complexes to form multinuclear complexes.  相似文献   

11.
The reduction potentials, lipophilicities, cellular uptake and cytotoxicity have been examined for two series of platinum(IV) complexes that yield common platinum(II) complexes on reduction: cis-[PtCl(4)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OAc)(2)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)], [PtCl(4)(en)], cis,trans-[PtCl(2)(OAc)(2)(en)] and cis,trans-[PtCl(2)(OH)(2)(en)] (en=ethane-1,2-diamine, OAc=acetate). As previously reported, the reduction occurs most readily when the axial ligand is chloride and least readily when it is hydroxide. The en series of complexes are marginally more lipophilic than their ammine analogues. The presence of axial chloride or acetate ligands results in a slighter higher lipophilicity compared with the platinum(II) analogue whereas hydroxide ligands lead to a substantially lower lipophilicity. The cellular uptake is similar for the platinum(II) species and their analogous tetrachloro complexes, but is substantially lower for the acetato and hydroxo complexes, resulting in a correlation with the reduction potential. The activities are also correlated with the reduction potentials with the tetrachloro complexes being the most active of the platinum(IV) series and the hydroxo being the least active. These results are interpreted in terms of reduction, followed by aquation reducing the amount of efflux from the cells resulting in an increase in net uptake.  相似文献   

12.
13.
The aim of this study was to synthesize and evaluate plasmid DNA interaction of new platinum(II) complexes with some 2-substituted benzimidazole derivatives as carrier ligands which may have potent anticancer activity and low toxicity. Twelve benzimidazole derivatives carrying indole, 2-/or 3-/or 4-methoxyphenyl, 4-methylphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 3,4,5-trimethoxystyryl, 3,4,5-trimethoxybenzylthio or dimethylamino ethyl groups in their position 2 and twelve platinum(II) complexes with these carrier ligands were synthesized. The chemical structure of the platinum complexes have been characterized by their elemental analysis and FIR, 1H NMR and mass spectra and their 1H NMR and FIR spectra were interpreted by comparison with those of the ligands. The interaction of all the ligands and their complexes with plasmid DNA and their restriction endonuclease reactions by BamHI and HindIII enzymes were studied by agarose gel electrophoresis. It was determined that complex 1 [dichloro-di(2-(1H-indole-3-yl)benzimidazole)platinum(II)·2H2O] has stronger interaction than carboplatin and complex 10 [dichloro-di(2-(3,4,5-trimethoxystyryl)benzimidazole)platinum(II)·2H2O] has stronger interaction than both carboplatin and cisplatin with plasmid DNA.  相似文献   

14.
The reactions of [PtMe3(OAc)(bpy)] (4) with the N,S and S,S containing heterocycles, pyrimidine-2-thione (pymtH), pyridine-2-thione (pytH), thiazoline-2-thione (tztH) and thiophene-2-thiol (tptH), resulted in the formation of the monomeric complexes [PtMe3(-κS)(bpy)] ( = pymt, 5; pyt, 6; tzt, 7; tpt, 8), where the heterocyclic ligand is coordinated via the exocyclic sulfur atom. In contrast, in the reactions of [PtMe3(OAc)(Me2CO)x] (3, x = 1 or 2) with pymtH, pytH, tztH and tptH dimeric complexes [{PtMe3(μ-)}2] (μ- = pymt, 9; pyt, 10; tzt, 11) and the tetrameric complex [{PtMe33-tpt-κS)}4] (12), respectively, were formed. The complexes were characterized by microanalyses, 1H and 13C NMR spectroscopy and negative ESI-MS (12) measurements. Single-crystal X-ray diffraction analysis of [PtMe3(pymt-κS)(bpy)] (5) exhibited a conformation where the pymt ligand lies nearly perpendicular to the complex plane above the bpy ligand that was also confirmed by quantum chemical calculations on the DFT level of theory.  相似文献   

15.
A series of new platinum(II) amine complexes containing 1,1- and 1,2-cyclobutanedicarboxylate ligands, cis-[PtA2(1,1-CBDCA)] (A = RNH2, where R = C2H5, n-C3H7, n-C4H9, n-C5H11, n-C6H13, c-C3H5, c-C5H9, c-C6H11; A2 = ethylenediamine, 1,3-diaminopropane), cis-[PtA2(1,2-CBDCA)] (A = NH3, RNH2 where R = CH3, C2H5, n-C3H7, n-C4H9, c-C3H5) and trans-[Pt(NH3)2(1,1-CBDCAH)2] (CBDCA, CBDCAH = dianion and monoanion of the dicarboxylic acid, respectively) have been synthesized by an improved route. These complexes are stable in aqueous solution and show good aqueous solubility. The [Pt(c-C3H5NH2)2(1,1-CBDCA)] can be isolated in white, grey and blue forms. The grey and blue forms exhibit ESR signals analogous to the so-called platinum blues. The existence of the blue form in aqueous solution is time and temperature dependent. Several of the complexes have been tested against leukaemia L1210 in male BDF mice and activity appears to decrease with the increase in length of the aliphatic chain (or increase in size of the alicyclic ring) of the primary amine. The Yoshida lymphoscarcoma screen, usually insensitive to platinum drugs, was found to respond well to [Pt(n-C4H9NH2)2(1,1-CBDCA)] in 5-day subcutaneously implanted tumours in female Wistar rats.  相似文献   

16.
Cisplatin, cis-[Pt(NH3)2Cl2], is an effective anticancer agent in wide clinical use whose efficacy is affected by cellular interactions with sulfur-containing nucleophiles. These interactions can potentially enhance the efficacy of the drug by mediating its delivery to nuclear DNA or inactivate the drug by binding to it irreversibly or by labilizing the NH3 ligands. Despite the potential importance of trans-labilization reactions in the mechanism of action of the drug, few detailed studies on trans labilization of the ammines have been conducted. We used 2D NMR to show that some trans labilization occurs in proliferating cells and that aqueous extracts of cancer cells labilized 20% of the amine ligands of cis-[PtCl2(13CH3NH2)2] after a 12-h incubation. Both low molecular mass nucleophiles (less than 3 kDa) and high molecular mass nucleophiles (more than 3 kDa) labilize the amines with similar efficiency. Studies with model compounds show that thiols and thioethers bind to platinum(II) at similar rates, but thioethers are significantly more efficient at labilizing the am(m)ine at lower pH. N-Acetylcysteine is a more efficient trans-labilizer than glutathione, suggesting that the displacement of the amine proceeds through an associative mechanism. The lag time, the time that elapses from the formation of the Pt–S bond till the release of the amine trans to the sulfur, depends on the pH (for thiols), increasing at lower pH. Quantification of the platinum adducts obtained from incubation of cisplatin with cell extracts indicates that two thirds of the platinum is bound to cellular components with molecular mass greater than 3 kDa. D. Gibson is a member of the David R. Bloom Center for Pharmacy.  相似文献   

17.
Ruthenium(II) bis(2,2″-pyridyl) complexes with bridging ligands: 6,7-dichloro-2,3-di(2-pyridyl)quinoxaline; 2,3-di(2-pyridyl)-quinoxaline; 5-methyl-2,3-di(2-pyridyl) quinoxaline; 6,7-dibenzo-2,3-di(2-pyridyl)quinoxaline have been prepared. The electrochemical and spectroscopic properties of these complexes are reported. The resonance Raman spectroelectrochemical results indicate the presence of oxidation state sensitive marker bands in the resonance Raman spectra of the oxidized complexes. The spectroscopic data for the reduced complexes is similar for all four species. The resonance Raman data for the reduced species are dominated by 2,2″-bipyridyl vibrations.  相似文献   

18.
The synthesis of a novel series of 17beta-estradiol-linked platinum(II) complexes is described. The new molecules are linked with an alkyl chain at position 16alpha of the steroid nucleus and bear a 16beta-hydroxymethyl side chain. They are made from estrone in five chemical steps with an overall yield exceeding 28%. The biological activity of these compounds was evaluated in vitro on estrogen dependent and independent (ER+ and ER-) human breast cancers. The derivatives incorporating a 2-(2'-aminoethyl)pyridine ligand displayed good activity against the cell lines particularly when the connecting arm is 10 carbon atoms long.  相似文献   

19.
According to the method used in our laboratory, our group synthesized (DIPP-Trp)2-Lys-OCH3. It inhibited the proliferation of K562 and HeLa cells in a dose-and time-dependent manner with an IC50 of 15.12 and 42.23 µM, respectively. (DIPP-Trp)2-Lys-OCH3 induced a dose-dependent increase of the G2/M cell population in K562 cells, and S cell population in HeLa cells; the sub-G0 population increased dramatically in both cell lines as seen by PI staining experiments using a FACS Calibur Flow cytometer (BeckmanCoulter, USA). Phosphatidylserine could significantly translocate to the surface of the membrane in (DIPP-Trp)2-Lys-OCH3-treated K562 and HeLa cells. The increase of an early apoptotic population was observed in a dose-dependent manner by both annexin-FITC and PI staining. It was concluded that (DIPP-Trp)2-Lys-OCH3 not only induced cells to enter into apoptosis, but also affected the progress of the cell cycle. It may have arrested the K562 and HeLa cells in the G2/M, S phases, respectively. The apoptotic pathway was pulsed at this point, resulting in the treated cells entering into programmed cell death. (DIPP-Trp)2-Lys-OCH3 is a potential anticancer drug that intervenes in the signalling pathway.  相似文献   

20.
The cellular distribution of platinum in A2780 ovarian cancer cells treated with cisplatin and platinum(IV) complexes with a range of reduction potentials has been examined using elemental analysis (synchrotron radiation-induced X-ray emission). The cellular distribution of platinum(IV) drugs after 24 h is similar to that of cisplatin, consistent with the majority of administered platinum(IV) drugs being reduced. Micro-X-ray absorption near-edge spectra of cells treated with cisplatin and platinum(IV) complexes confirmed the reduction of platinum(IV) to platinum(II). In cells treated, the most difficult to reduce complex, cis,trans,cis-[PtCl2(OH)2(NH3)2], platinum(IV) was detected in the cells along with platinum(II). The observations are in accordance with the relative ease of reduction of the platinum(IV) complexes used and support the requirement of reduction for activation of platinum(IV) complexes.Abbreviations en ethane-1,2-diamine - GM growth medium - PBS phosphate buffered saline - RPMI Roswell Park Memorial Institute - SRIXE synchrotron radiation-induced X-ray emission - XAFS X-ray absorption fine structure - XANES X-ray absorption near-edge spectroscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号