首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
通过物理光学法 (PO)与阻抗边界条件 (IBC)结合求解涂覆雷达吸波材料 (RAM)复杂目标的面元散射 ,利用等效电流法 (ECM)与增量长度绕射系数 (ILDC)结合求解金属棱边散射 ,根据等效边缘电流求解介质边缘散射。利用非均匀有理B样条 (NURBS)曲面对目标进行几何建模。经过可视化电磁分析 ,在Windows 98/NT环境下求解涂覆RAM复杂目标的雷达散射截面 (RCS) ,与实验结果比较 ,获得令人满意的结果。  相似文献   

2.
飞行动目标RCS可视化计算   总被引:4,自引:0,他引:4  
通过动力学方程和运动学方程计算飞行动目标的飞行轨迹,利用飞行扰动模型计算飞行过程中的飞行随机抖动,将图形电磁计算的方法推广到计算飞行动目标的雷达散射截面,并比较了考虑随机抖动前后的计算结果.  相似文献   

3.
在复杂目标的电磁散射计算中,图形电磁计算方法(graphicselectromagneticcomputing,GRECO)可以克服其他方法的缺点,实现电大复杂目标雷达散射截面(RCS)的实时计算.然而目标实体模型的建立需要依靠各种CAD软件,计算对CAD软件依赖性很强,本文提出的OpenGL技术,可以使计算和造型分开,形成独立的软件,同时还可以通过模型数据文件同CAD软件保留接口.  相似文献   

4.
三维电大尺寸复杂群目标的单站RCS的快速多极子分析   总被引:2,自引:1,他引:2  
用快速多极子算法(FMM)和共轭梯度法(CG)求解三维电大尺寸复杂群目标的电磁散射特性。对单站雷达散射截面(RCS)的预估,更采用了物理光学电流近似和相位修正的继承迭代法两项措施进一步加快了求解过程。该方法具有节省内存,计算量小,迭代速度快且精确度高的特点,特别适于准确分析多个电大尺寸目标间的相互影响。用三维计算实例验证了该方法在解决电大尺寸复杂群目标电磁散射分析方面的有效性和优越性。  相似文献   

5.
高频区隐身目标的改进GRECO方法的RCS计算   总被引:2,自引:1,他引:2  
图形电磁计算(GRECO)方法被认为是求解电大尺寸复杂目标的高频雷达散射截面(RCS)最有效的方法之一.将应用于理想导体劈的等效边缘电磁流概念推广到涂覆吸波材料的阻抗劈上,运用物理光学法(PO)和阻抗边界条件(IBC)求解了涂覆雷达吸波材料的表面的RCS计算.同时本文对目标的棱边检测方法进行改进,可以更全面地检测到所有的棱边,并计算其对目标总RCS的影响.计算结果与相关文献进行比较,结果令人满意.  相似文献   

6.
通过图形电磁计算(GRECO)方法,利用在安装了高性能的图形加速卡的微机上实时计算复杂目标的高频雷达散射截面(RCS),目标用非均匀有理B样条(NURBS)进行样条模拟,由图形加速卡完成消隐和遮挡运算,利用Phong光照模型着色渲染目标可见表面,运用物理光学(PO),等效电磁流法(MEC),增量长度绕射系数法(ILDC)和物理绕射理论(PTD)计算目标高频区的雷达散射截面。根据极化之间的转换关系分析了线极化和圆极化下的雷达散射截面。计算结果与理论值进行比较,效果令人满意。  相似文献   

7.
利用NURBS曲面对虚拟现实环境中的目标进行几何建模。通过对入射场进行Lorentz变换 ,得到运动坐标系下的入射场 ,进而求得运动坐标系下的散射场。对运动坐标系下散射场再进行Lorentz反变换 ,就可得到静止坐标系下散射场。进而求出运动目标的雷达散射截面  相似文献   

8.
以SCTE预估系统为基础,用面元法建立了雷达静止和运动时目标近场RCS理论模型.以矩形金属平板为例,分别计算了雷达静止和三种运动方式下的近场RCS曲线.结果表明,雷达的运动状态对目标近场RCS的影响是不容忽视的,也是比较复杂的.  相似文献   

9.
给出了一种快速计算复杂涂敷目标散射场的方法。将复杂目标电磁散射分成面元和边缘散射,运用物理光学(PO)、阻抗边界条件(IBC)、等效电流(EM C)和物理绕射理论(PTD)对复杂目标雷达散射截面(RCS)进行计算,并将计算结果与文献结果及无涂敷纯金属目标的RCS进行对比分析,结果与文献及预期估计情况吻合较好,表明该方法不仅计算简单,而且结果也较为精确。  相似文献   

10.
利用物理光学 (PO)求解三面角反射器 (TCR)的多次散射场 ,计算结果突出表明了三面角反射器的多次散射贡献。同时利用图形电磁计算 (GRECO)来实现可视化实时计算 ,计算结果令人满意 ,具有重要的工程应用价值。  相似文献   

11.
一种低散射目标RCS行波解的C—R样条建模方法   总被引:1,自引:1,他引:0  
CR(CatmullRom)样条具有直观、稳定、灵活、不需反求控制顶点等优点,特别适用于具有复杂外形的飞行器进行几何描述.利用(G1,k = 1) CatmullRom 样条及其张量积曲面对低散射目标进行几何建模,并求解低散射目标行波雷达散射截面贡献,通过计算结果与实验结果比较,获得令人满意的结果.  相似文献   

12.
利用物理光学来分析各向异性曲面的散射场, 数值计算结果将突出显示各向异性材料产生的影响. 同时利用图形电磁计算(GRECO)方法实现对各向异性材料的曲面结构的电磁计算. 结果表明, 该方法是正确有效的, 具有重要的工程应用价值.  相似文献   

13.
根据对目标在高频区小角度双站散射特性的分析,对目标小角度双站散射特性展开等效单站可视化研究。可视化电磁计算方法是一种非常有效的分析高频区目标单站散射的方法,文章将该方法的应用面拓展到小角度双站散射研究,通过实例计算,验证了该方法具有工程计算的有效性。  相似文献   

14.
根据物理光学法、几何绕射理论、等效原理及阻抗边界条件,由各向异性介质中平面波的本征方程,得到耦合矩阵,进而得到多层介质的反射与透射矩阵.采用图形电磁计算方法分析涂敷各向异性雷达吸波材料的简单及复杂目标的电磁散射.该方法具有计算速度快、节省储存空间等特点,对于计算相似曲面及平面的电大尺寸涂敷目标的雷达散射截面,具有很好的实用价值.  相似文献   

15.
针对雷达散射截面测试设备无法测量大尺寸目标模型 ,而采用分段测试方法时遇到的分段的剖面处理问题 ,提出了由三种不同方式封住分段的剖面测得的三组雷达散射截面值可得到该段的散射场的一种方法 .算例表明 ,该方法是有效的 .  相似文献   

16.
飞机动态雷达散射截面(RCS)的分析能够为飞机隐身设计和测试评估提供重要理论支撑。针对现有动态RCS计算方法只能适用于有限角域的不足,对飞机本体系中雷达方位角的定义进行了修正,扩大了现有方法的适用范围。提出了一种新型的动态RCS计算方法,解决了现有方法中雷达视线角与飞机RCS值无法建立一一映射关系的问题,使用飞机本体坐标系与雷达照射坐标系的欧拉旋转角表征飞机的动态RCS值,相比传统方法具有更高的准确性。最后,仿真验证了当飞机处于机动状态时,新型的动态RCS计算方法得出的结果与现有方法相比有显著差异,其有效提高了动态RCS计算的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号