首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于目前大部分温敏增稠剂的耐温抗盐性能较差,难以适用于高深储层。以自制温敏单体(PADA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N,N-亚甲基双丙烯酰胺(MBA)和改性纳米SiO2颗粒(N-np)为原料,通过原位聚合法制备了一种温敏聚合物/纳米SiO2复合材料N-AMPA。采用正交实验优化了N-AMPA的合成条件,通过傅里叶变换红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)等确定了N-AMPA的分子结构,考察了N-AMPA溶液的温敏增稠性能、耐温抗盐性能和抗剪切性能。研究结果表明,N-AMPA溶液在65~180℃内具有温敏增稠性能,最大增稠率达94%;N-AMPA溶液在200℃高温老化后黏度保留率为68%;在20%NaCl盐水溶液中,黏度保留率为63%;在剪切速率为1021 s-1时其溶液黏度达50 m Pa·s。与温敏聚合物AMPA相比,N-AMPA表现出良好的耐温抗盐性、较强的抗剪切性能。  相似文献   

2.
为揭示阳离子单体和交联剂浓度对阳离子聚丙烯酰胺微球水溶液的剪切性及黏弹性的影响规律,以丙烯酰胺(AM)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)和N,N'-亚甲基双丙烯酰胺(MBA)等为原料,通过反相乳液聚合法制备了阳离子度为2%数20%、交联度为0和阳离子度为10%、交联度为0.05%数0.2%的微球。采用高温高压流变仪研究了聚合物微球溶液的耐温耐剪切性、剪切恢复性以及黏弹性。结果表明,聚合物微球溶液的耐温耐剪切性优良,在80℃、170 s~(-1)的条件下剪切2 h的黏度仍能保持在150 mPa·s以上。增加阳离子度,微球溶液抗剪切性和剪切恢复性增强,黏度保留率从30.79%增至68.56%;加入交联剂,微球溶液的稳定性增强,黏度保留率高达85.38%,但微球溶液的整体黏度降低。在0.01数10 Hz频率扫描范围内,聚合物微球溶液的弹性模量始终大于黏性模量,具有良好的弹性;且随着阳离子度增加,微球溶液的黏弹性模量呈增大趋势;随着交联度增加,微球溶液的黏弹性模量先增大后减小。图8参13  相似文献   

3.
杨光  张健  向问陶 《海洋石油》2009,29(2):48-50
实验研究了JZ9-3油田的3种水质(水源水、污水、清污混合水)对聚合物溶液剪切前后黏度的影响。结果显示:在相同浓度条件下,清污混合水配制的聚合物溶液黏度最高,其次是污水配制的聚合物溶液,水源水配制的聚合物溶液黏度最低;聚合物溶液经WARING搅拌器(1档3 500 rpm,20 s)剪切后的黏度保留率数据显示,污水配制的聚合物溶液剪切后黏度保留率最高,当浓度大于1 000 mg/L时,保留率在90%左右;最低的是水源水配制的聚合物溶液,保留率在55%左右。分析发现二价阳离子除了对聚合物溶液的黏度存在一定的影响外,对聚合物溶液剪切后的黏度保留率影响更大。  相似文献   

4.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为主要反应单体,甲基丙烯酰氧乙基二甲基十六烷基溴化铵为疏水单体,采用水溶液聚合法合成了一种新型疏水缔合聚合物,适宜的反应条件是:反应温度50℃,单体质量浓度20%,疏水单体加量1.3%(物质的量分数),引发剂加量0.2%(以单体质量计),pH值为7。对聚合物的结构进行了表征,评价了聚合物溶液的性质。结果表明:聚合物结构与设计的分子结构一致;聚合物在170s-1下剪切2h后黏度保留率为78.2%;临界缔合质量浓度为0.4g/dL;90℃黏度保留率为61.2%;抗盐效果一般,NaCl加入量为0.5mol/L时,黏度保留率为38.2%。  相似文献   

5.
近井地带剪切作用对驱油用聚合物溶液渗流特性的影响   总被引:1,自引:0,他引:1  
在前人的工作基础上设计了一个近井地带剪切模拟装置,选用两种较为典型的聚丙烯酰胺类聚合物——部分水解聚丙烯酰胺(HPAM)和疏水缔合聚丙烯酰胺(HAPAM)进行室内实验,研究两种聚合物溶液经剪切后的渗流特性。实验结果表明:随着吸水强度的增加,两种浓度为1750 mg/L的聚合物溶液的黏度和黏度保留率快速下降。由于自身的疏水缔合作用,HAPAM溶液剪切后具有高于HPAM溶液的黏度及黏度保留率。在吸水强度10 m3/(m·d)和20 m3/(m·d)条件下剪切两种聚合物溶液,经剪切后的HAPAM溶液的阻力系数和残余阻力系数远大于HPAM溶液的,HAPAM溶液的阻力系数损失率小于HPAM溶液,而残余阻力系数损失率大于HPAM溶液。经剪切后的HAPAM溶液具有更高的驱油效率,剪切后HAPAM的溶液原油采收率损失略高于HPAM溶液的。  相似文献   

6.
采用水溶液聚合后水解法,以丙烯酰胺(AM)、(4-丙烯酰胺基)苯基十四烷基二甲基溴化铵(PTDAB)、2-丙烯酰胺基-2甲基丙磺酸(AMPS)为原料合成了疏水缔合聚合物P(AM/PTDAB/AMPS/NaAA),通过考察反应条件对合成聚合物的特性黏数、溶解性以及增黏性的影响规律确定了最佳合成条件,研究了最佳合成条件下所合成聚合物的耐温抗盐性、剪切稳定性以及热稳定性。聚合物的最佳合成条件为:PTDAB加量为总单体质量的0.5%~0.8%,AMPS加量为总单体质量的15%,总单体质量分数为25%,复合引发剂加量为总单体质量的0.1%,pH值为8,引发温度30℃。采用矿化度100 g/L的盐水配制的质量浓度2000 mg/L的合成聚合物溶液的黏度仍大于30 mPa·s;采用矿化度20 g/L的盐水配制质量浓度2000 mg/L的合成聚合物溶液在转速5000 r/min下剪切3 min再静置4 h后的黏度保留率可达80%以上;聚合物溶液在85℃高温老化150 d后的黏度大于20 mPa·s。所合成四元共聚物表现出优异的耐温抗盐性、剪切稳定性以及热稳定性,性能优于高相对分子质量抗盐聚丙烯酰胺P(AM-AMPS-NaAA)。  相似文献   

7.
研究了高分子量缔合聚合物(HAWSP)和聚丙烯酰胺(HPAM)溶液的岩心剪切黏度及分子量稳定性,考察了注入速度、剪切次数及岩心渗透率对剪切稳定性的影响。实验结果表明,随着注入速度的增加,HAWSP聚合物溶液剪切后黏度呈"先平稳后下降"的两段式特征,而HPAM溶液剪切后黏度则单调下降;HAWSP聚合物经一次剪切后黏度及分子量即趋于稳定,而HPAM则需多次岩心剪切后才趋于稳定;高速岩心剪切时聚合物分子量保留率与岩心渗透率大小密切有关,渗透率越高,分子量保留率越大;在渗透率和注入速度相同时,HAWSP表现出更好的剪切稳定性。  相似文献   

8.
以丙烯酰胺(AM)、丙烯酸(AA)和1-丙烯酰基-4-甲基哌嗪(PZAM)为主要单体,通过氧化还原引发体系,制备了一种含哌嗪环聚合物驱油剂AM/AA/PZAM,通过IR对聚合物进行了结构表征。实验结果表明,溶解性测试表明该聚合物具有很好的溶解性。2 000mg/L的聚合物溶液表观黏度可达512.2mPa·s;在10 000mg/L NaCl、1 000mg/L CaCl_2或1 000mg/L MgCl_2的盐水溶液中,黏度保留率分别为12.5%,11.6%,11.1%;在1 000s~(-1)剪切速率下,黏度保留值为31.9mPa·s;相比25℃,聚合物溶液在120℃下黏度保留率为60.9%。在模拟驱油实验中,该聚合物溶液可提高模拟原油采收率达12.5%。  相似文献   

9.
注入速度对疏水缔合聚合物剪切后恢复性能的影响   总被引:2,自引:0,他引:2  
张瑞  秦妮  彭林  胡冰艳  叶仲斌 《石油学报》2013,34(1):122-127
针对渤海绥中36-1油田的实际油藏地层条件模拟设计了近井地带模型。研究了注入速度分别为5m3/(m·d)、10m3/(m·d)和20m3/(m·d)时,部分水解聚丙烯酰胺与疏水缔合聚合物2种不同分子结构的聚合物剪切后溶液性能恢复过程。实验结果表明,部分水解聚丙烯酰胺溶液的黏度、阻力系数、残余阻力系数等不能恢复,而疏水缔合溶液经高速剪切后溶液性能可以恢复。在注入速度为5m3/(m·d)时,疏水缔合聚合物在近井地带最终黏度保留率为92.3,阻力系数保留率为43.7,残余阻力系数保留率为81.1,且随着注入速度增大,溶液的黏度、阻力系数、残余阻力系数降低。在注入速度为10m3/(m·d)时,黏度、阻力系数、残余阻力系数保留率分别为70.6、35.2、72.7。注入速度为20m3/(m·d)时,黏度、阻力系数、残余阻力系数保留率分别为55.6、26.3、55.8。利用原子力显微镜观察剪切后疏水缔合聚合物微观形态认为,疏水基团的缔合作用使得原本被高速剪切破坏的溶液网络结构重新生成。  相似文献   

10.
针对渤海SZ36-1油田高温、高盐、大井距对注聚用聚合物剪切稳定性的要求,进行了SZ36-1油藏条件下,Na+、K+、Ca2+、Mg2+等离子对缔合聚合物AP-P4溶液黏度剪切保留率的影响研究。研究发现,影响缔合聚合物溶液黏度剪切保留率的关键因素是溶液中的Ca2+、Mg2+;在Na+、K+浓度小于10 000 mg/L时,其存在有益于提高溶液黏度的剪切保留率;Ca2+、Mg2+浓度超过400 mg/L时,溶液黏度的剪切保留率开始明显降低;在Ca2+、Mg2+浓度低于100 mg/L时,其存在有助于提高溶液黏度剪切保留率。在模拟渤海SZ36-1油田注聚水源井A15井的水质条件下,证实了Ca2+、Mg2+是影响缔合聚合物AP-P4黏度剪切稳定性的关键因素。  相似文献   

11.
为研究多孔介质的剪切作用对聚合物溶液粘弹性和驱油能力的影响,在渤海SZ36—1油藏条件下,通过研究模拟射孔孔眼剪切前后AP—P4和M04000这2种聚合物溶液粘弹性和驱油能力的变化后认识到:在高矿化度水质条件下,射孔孔眼处的高速剪切在一定程度上破坏了聚合物的分子链和溶液结构.导致聚合物溶液的粘弹性和提高采收率的能力降低。经过多孔介质剪切后.虽然疏水缔合聚合物溶液与高分子聚丙烯酰胺溶液粘度相当,但由于经剪切后2种溶液之间结构的差异使两者提高采收率能力显著不同。因此,在聚合物驱过程中,须考虑近井地带剪切作用对聚合物溶液性能的影响,特别是针对大排量注入的海上油田,须提高聚合物的抗剪切能力,以提高聚合物驱的效果?  相似文献   

12.
祝仰文 《油田化学》2019,36(1):97-101
为了研究剪切条件下B-PPG溶液的黏度及黏弹性变化的机理,通过机械剪切(模拟聚合物从设备到井筒注入过程中所受剪切)和射孔孔眼(炮眼)剪切(模拟聚合物溶液通过射孔孔眼及近井地层所受剪切)方法,研究了B-PPG在不同剪切强度作用下溶液的黏度保留率,并利用原子力显微镜观察B-PPG溶液的微观结构。结果表明,B-PPG的增黏性较好。70℃下当溶液质量浓度大于3.5 g/L时,颗粒的支化链相互缠绕形成的网络结构导致溶液黏度迅速增大。B-PPG的抗剪切性较好。B-PPG溶液的表观黏度随剪切速率增加而降低;B-PPG溶液浓度越高,溶液黏度降幅越大。机械剪切后B-PPG溶液的黏度保留率大于50%,模拟射孔孔眼剪切后的黏度保留率大于20%。剪切前后的B-PPG溶液均以储能模量为主。两种剪切条件下B-PPG原有的交联网络结构均有不同程度地破坏,分子间连接较弱,不同剪切类型及强度对网络结构的破坏程度不同,射孔孔眼剪切对网络结构的破坏最大。图13参14  相似文献   

13.
采用水溶液聚合法,以丙烯酰胺(AM)、丙烯酸(AA)为单体,甲基丙烯酰氧乙基二甲基十六烷基溴化铵(C_(16)DM)为疏水单体合成了一种两性离子聚合物。通过单因素实验确定了聚合反应的较佳条件是:单体总质量分数25%、体系pH值8、n(AM):n(AA):n(C_(16)DM)=77.7:21:1.3、引发剂(n(APS):n(SS)=1.2:1)用量为0.2%、反应温度60℃、反应时间5h。实验表明:聚合物溶液的临界缔合浓度是2g/L;1.0%聚合物溶液黏度在90℃时为62 mPa·s,黏度保留率为64.6%;0.8%聚合物溶液在NaCl浓度为0.6 mol/L时黏度为40 mPa·s,黏度保留率为47.6%;在1 70 s~(-1)的剪切速率下,经过1200 s的剪切后,0.8%的聚合物溶液的黏度稳定在70 mPa·s,黏度保留率为82.3%。  相似文献   

14.
关丹  王兴华  任豪  阙庭丽 《油田化学》2018,35(4):676-681
为了提高三采污水配制聚合物溶液的性能,对比评价了超支化缔合聚合物HBPAM和现场在用的KYPAM聚合物的增黏性能、黏弹性能、抗盐性能、长期稳定性能、抗剪切性能以及驱油效果,并观察了二者的微观形貌。研究结果表明,当浓度高于临界缔合浓度(1250 mg/L)后,HBPAM具有较强的增黏性能和黏弹性能;与KYPAM相比,HBPAM具有更好的抗盐性能和长期稳定性能。污水配制的浓度1500 mg/L的KYPAM溶液,在油藏条件老化180 d后的黏度仅为13 mPa·s左右,黏度保留率仅20%,而相同处理条件下,HBPAM溶液的黏度大于50mPa·s,黏度保留率在80%左右。HBPAM溶液具有较强的抗剪切稳定性,机械剪切速率15000 s-1作用后再静置24 h,浓度1500 mg/L的HBPAM溶液的黏度保留率为85%数89%,扫描电镜结果显示HBPAM具有更加规整的三维网状结构。岩心驱替实验结果表明,在水驱基础上,注0.3 PV的1500 mg/L的HBPAM溶液提高采收率16.5%,比黏度相近的浓度1800 mg/L的KYPAM溶液提高采收率幅度高5.0%。与KYPAM溶液相比,相同黏度的HBPAM溶液更能改善油藏非均质性。  相似文献   

15.
扶余油田聚合物驱聚合物筛选及其性能评价   总被引:1,自引:0,他引:1  
利用现代油藏工程理论、仪器检测分析和物理模拟方法,开展了"高分"、"超高"、"抗盐"聚合物及两种复配聚合物的抗盐、抗剪切、耐温性及分子线团尺寸(Dh)分布的研究,评价了流动性能,并进行了机理分析和探讨。结果表明,与"超高"聚合物相比,"复配"聚合物在熵驱动作用下不同分子链发生较强物理缠绕并形成氢键,增强了"复配"体系分子间作用力,使其内旋转困难,柔顺性变差,刚性增强而具有优异的抗盐性、抗剪切性。"复配2"(高分、超高、抗盐质量比15:60:25)的抗盐性黏度损失率比"超高"聚合物的低6.7%,抗剪切性黏度损失率低3.5%。二者的抗温性黏度损失率基本相同。"复配"聚合物Dh分布较宽,不可及孔隙体积较小,在多孔介质中的滞留量增加。在岩心渗透率为160×10-3μm2时,"复配2"的阻力系数Fr和残余阻力系数Frr分别为54.1和21.9,比"超高"聚合物的37.2和13.2高,渗流特性较优异。与"复配1"(高分、超高、抗盐质量比16:75:9)相比,"复配2"的抗盐性和在多孔介质的滞留能力较强,二者的抗剪切性和耐温性相当。  相似文献   

16.
以丙烯酰胺、丙烯酸和2-丙烯酰胺基十六烷基磺酸钠(NaAMC_(16)S)为原料,制备了ZS-1、ZS-2、ZS-3(NaAMC_(16)S单体加量分别为1%、2%、3%)三元共聚物,利用元素分析仪确定了共聚物的组成,考察了共聚物分子量、黏性、抗盐性、抗剪切性及注入性。实验测得ZS-1、ZS-2、ZS-3的相对分子质量分别为1661×10~4、921×10~4、523×10~4。元素分析结果表明,据S元素的含量计算共聚物的组成,ZS-1、ZS-2、ZS-3中分别含有0.998%、1.488%、1.973%NaAMC_(16)S。随NaAMC_(16)S含量的增大,共聚物分子量降低,黏度增加,抗盐性和抗剪切性提高。室温下经毛细管剪切后,ZS-1、ZS-2、ZS-3的黏度保留率分别为84.1%、87.6%、89.4%。岩心实验表明,ZS-3的注入性良好,并且0.9g/L ZS-3溶液与1.8g/L部分水解聚丙烯胺(相对分子质量1600×10~4)的采收率相当,分别为22.48%和22.67%,可降低聚合物驱费用。  相似文献   

17.
影响疏水缔合聚合物溶液粘度保留率的因素有很多,针对渤海某油田的地层水质条件,利用螯合剂GX,将质量浓度为1750 mg/L的疏水缔合聚合物溶液中活性钙、镁离子含量之和控制在360~400 mg/L,可使其在65℃老化120 d后粘度保留率由33.8%提高至222.7%,运用吴因搅拌器Ⅰ档剪切10 s后粘度保留率由19.73%提高至55.92%.研究结果表明,通过调控疏水缔合聚合物溶液中活性钙、镁离子含量之和,可以有效地改善疏水缔合聚合物溶液粘度保留率,这为提高疏水缔合聚合物溶液的粘度老化保留率和剪切保留率提供了一种可行的方法.尽管螯合剂GX能够使普通聚丙烯酰胺溶液增粘,但并不能提高其粘度的剪切保留率,其原因是普通聚丙烯酰胺类聚合物的溶液粘度构成不同于疏水缔合聚合物.  相似文献   

18.
《石油化工》2016,45(6):701
模拟油田含S~(2-)污水配制聚丙烯酰胺(HPAM)溶液,利用FTIR、黏度计、流变仪等研究了S~(2-)含量对HPAM分子结构及溶液黏弹性的影响。表征结果显示,S~(2-)存在下,聚合物分子主链C—C键发生断裂导致溶液黏弹性降低。实验结果表明,随S~(2-)含量的增大,聚合物溶液表观黏度下降速率增大。在实验应力范围内,S~(2-)含量不同的聚合物溶液均出现线性黏弹区,但随S~(2-)含量的增大,聚合物溶液线性黏弹区对应的复合模量逐渐降低,储能模量和损耗模量均减小。S~(2-)含量较高时,聚合物增黏效果变差。随剪切速率的增大,法向应力差逐渐增大;S~(2-)含量越高,法向应力差增幅越显著。在剪切速率为7.34 s-1下,当S~(2-)含量低于1.7 mg/L时,法向应力差保留率大于表观黏度保留率;当S~(2-)含量高于1.7 mg/L时,表观黏度保留率大于法向应力差保留率。  相似文献   

19.
聚合物溶液的黏度是油藏方案设计、动态预测和数值模拟中最为重要的输入参数。其中,聚合物的宏观黏度与聚合物经过多孔介质后的剪切黏度具有很大差异。为了进一步完善聚合物驱设计过程中的黏度,采用室内物理模拟方法,利用岩心驱替装置系统分析了不同渗透率、不同质量浓度聚合物的剪切流变性。结果表明,聚合物经过多孔介质剪切后表观黏度均下降,随着岩心渗透率降低,黏度降解的程度增加,黏度损失率均随岩心渗透率的增大而减小。相同渗透率条件下,随着质量浓度的增加,聚合物溶液剪切后表观黏度升高。当聚合物质量浓度低时,黏度剪切降解对渗透率不敏感,随着质量浓度的增加,黏度损失率增加,黏度与剪切次数呈衰减趋势。   相似文献   

20.
目的 单一功能的压裂液难以满足页岩油气的开采需求,为实现一剂多用,研制了兼顾减阻和增稠性能的一体化聚合物。方法 以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和十八烷基烯丙基二甲基氯化铵(DMAAC-18)为原料,采用水溶液聚合法,通过单因素实验确定最佳反应条件,合成了三元疏水缔合聚合物PAAD-18,进行了结构表征及性能测试。结果 聚合物质量分数为0.1%时,减阻率为71%,在10 m/s的流速下持续剪切10 min,减阻率保持在70%以上;质量分数为0.5%时,表观黏度为106.5 mPa·s, 90℃下黏度保留率为74.6%,盐水中黏度保留率大于52.1%。结论 该聚合物具有良好的耐温、耐盐及耐剪切性能,低含量下可做减阻剂,高含量下可做增稠剂,为体积压裂用多功能聚合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号