首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
通过重熔试验研究Al-5Ti-1B和Al-10Sr中间合金在A356熔体中的遗传效应。结果表明:A356合金经熔体处理后流动性较母材提高17.36%,T6处理后α-Al枝晶细化,二次枝晶间距仅为16.8μm,共晶硅圆整,抗拉强度达269 MPa、屈服强度203MPa、伸长率12.5%、硬度92 HBW。伴随重熔,细化变质效果逐渐衰退,熔体质量下降,以致力学性能和流动性下降。试验发现固溶后快淬可减小变质衰退带来的影响。  相似文献   

2.
研究了壳型预热温度、壁厚和变质处理对A356合金显微组织和力学性能的影响,分析了工艺参数和变质剂的作用机理。结果表明,不同壳型预热温度下未变质A356合金的金相组织都为枝晶α-Al和共晶硅相,且随着壳型预热温度的升高,枝晶α-Al不断粗化、共晶硅相不断聚集和长大,未变质A356合金的抗拉强度、断后伸长率和硬度都呈现为逐渐降低的趋势;随着壁厚的增加,La变质和Sr变质A356合金的α-Al枝晶不断粗化,共晶硅相也逐渐发生聚集和长大,抗拉强度、断后伸长率和硬度都呈现为逐渐降低的趋势;采用La或者Sr变质能够细化A356合金组织,并且相对未变质A356合金具有更高的强塑性,但是La变质A356合金对壁厚的敏感性相对Sr变质A356合金更小。  相似文献   

3.
研究了V合金化对Al-9Si合金凝固过程、微观组织和力学性能的影响。结果表明,在Al-9Si合金中添加V,析出化合物Si2V,而无Al V化合物析出,V对初生α-Al的析出温度无明显影响。随着V量增加,Al-9Si合金的初生α-Al的形核温度和形核过冷度同步增加,0.4%V(质量分数)使形核温度由未添加V的607.5℃上升至612.6℃,过冷度由24℃增加至27.1℃;继续增加V量,形核温度略有升高,但形核过冷度略有减小。V添加使Al-9Si合金初生α-Al晶粒形态由枝晶向等轴晶转变,Al-9Si-0.4V合金的α-Al晶粒尺寸由Al-9Si的593μm细化至302μm。V对共晶Si无变质作用,但V能使针状β-Al5FeSi转变为鱼骨状的Al12(Fe,V)3Si相。0.6%Sb(质量分数)变质Al-9Si-0.4V合金的抗拉强度、屈服强度和伸长率为153.9 MPa、78.5 MPa和6.56%,较Al-9Si合金分别提高23.8%、14.1%和102.4%;硬度由47.3 HV提高至59.1 HV。Al-9Si合金的拉伸断口由撕裂棱和解理...  相似文献   

4.
研究了Gd对Al-5Mg-2Si-Mn合金铸态组织、相结构、力学性能和断口形貌的影响。研究发现,Gd对Al-5Mg-2SiMn合金中的初生α-Al及共晶Mg_2Si相具有很强的变质和细化作用,当Gd含量为0.4%时,变质和细化效果最为明显,二次枝晶间距由未变质处理的28.23μm减小到12.96μm,共晶Mg_2Si尺寸从9.38μm减少到5.07μm。且合金的力学性能显著提高,抗拉强度、伸长率和硬度(HRB)分别由未细化变质的235MPa、3.9%和33.21增加至328MPa、6.0%和43.33,合金的断裂方式由脆性断裂转变为韧性断裂。  相似文献   

5.
采用光学显微镜、扫描电镜等研究了稀土Yb对A356铝合金显微组织与力学性能的影响。结果表明,Yb显著细化了A356合金中α-Al的晶粒尺寸,二次枝晶间距从41μm减小到30μm。共晶Si组织由粗大的针状或板条状细化为纤维状。添加Yb的A356铝合金中生成了一种新的AlSiYb金属间化合物。随着Yb含量的增加,A356铝合金的力学性能先增大后减小,当Yb含量为0.2%时,合金的力学性能达到最大值,其抗拉强度为195 MPa,伸长率为4.8%。  相似文献   

6.
在Sr+B复合变质A356合金的基础上加入稀土Y,通过光学显微镜及扫描电镜观察不同Y添加量对合金铸态显微组织形貌和尺寸的影响,并分析其力学性能和导热性能的变化规律。结果表明:稀土Y的添加不会影响Sr+B的变质效果且会使合金组织进一步细化,α-Al晶粒尺寸由未加Y变质时的62μm降低至44μm,二次枝晶臂间距从未变质时的12μm降低至9μm;A356铝合金中引入稀土Y会导致导热性能小幅度降低,但可以显著提升拉伸性能。当稀土Y添加量为0.4wt.%时,合金的综合性能最佳,热导率为158.8 W/(m·K),抗拉强度和伸长率分别为209.9 MPa和11.44%,与未加入稀土Y相比分别提升19.55%和167.29%。  相似文献   

7.
《铸造》2018,(11)
研究了不同Sr含量对A356合金组织及力学性能的影响。试验结果表明:当Sr加入量为0.04%时,所得到的合金组织及力学性能较好,共晶硅组织呈细颗粒状与蠕虫状,且均匀弥散分布于α-Al合金基体中,合金抗拉强度为215.99 MPa,伸长率为4.04%,布氏硬度为HBW56。  相似文献   

8.
以ZL114合金为研究对象,采用Al-5Ti-1B中间合金与Sm复合变质剂对合金进行细化变质。结果表明,随着Sm加入量的增加,合金中初生α-Al相的二次枝晶臂间距、共晶Si的平均面积和平均长径比先降低后增加,抗拉强度和硬度先增加后降低。当Sm的加入量为0.07%(Al-5Ti-1B加入量固定为1%)时,细化变质效果最佳,α-Al相的二次枝晶臂间距、共晶Si的平均面积和平均长径比分别为11.24μm、3.47μm~2和2.53,其抗拉强度和硬度(HV)分别为225 MPa、63.2。  相似文献   

9.
借助OM、SEM、EDS与力学性能测试表征,对比研究了Zr含量对ZL114A合金微观组织与力学性能的影响。结果表明,Zr元素以K2Zr F6形式添加时具有良好的晶粒细化效果与硅相变质作用,当Zr含量达到0.2%时,初生α-Al基体平均尺寸约为65μm,共晶硅形貌为椭球状,ZL114A合金T6态平均抗拉强度、屈服强度、伸长率与布氏硬度分别为329 MPa、286 MPa、8.2%与HBS116,当Zr含量过高时,易形成较大的块状Al3Zr相,沉淀在坩埚底部,晶粒细化与硅相变质效果随之衰减。  相似文献   

10.
《铸造》2019,(1)
研究了热处理对不同Sr含量变质A356合金组织及力学性能的影响。结果表明:A356合金经0.04%Sr变质与T6处理后,合金中的共晶硅全部转变成近球形颗粒组织。合金的布氏硬度、抗拉强度和伸长率均达到最大值,分别为HBW100.1,310.61 MPa和13.16%,综合力学性能得到显著提高。合金的断裂方式由铸态下的韧脆混合断裂转变成韧性断裂。  相似文献   

11.
通过拉伸试验、光学显微镜、扫描电镜及能谱仪等分析手段研究了T5时效处理(160 ℃×6 h)后AlSi9Cu3高压铸造(HPDC)铝合金的显微组织、力学性能和拉伸断口形貌。结果表明,AlSi9Cu3高压铸造铝合金试样经过时效处理后,显微组织主要为等轴晶状的初生α-Al、共晶Si相以及析出θ-Al2Cu相和α-Fe相。析出的平衡相θ-Al2Cu弥散分布在晶界上,提高了AlSi9Cu3压铸铝合金的强度和硬度。时效处理后,AlSi9Cu3压铸铝合金的抗拉强度、屈服强度、伸长率和硬度分别为375 MPa、258 MPa、4.0%和94 HBW。同时在AlSi9Cu3压铸铝合金的拉伸断口观察到了准解理和少量沿晶断裂特征。  相似文献   

12.
研究了Ti-5Al-4Zr-10Mo-3Cr合金经过β相区固溶(880 ℃)、不同温度时效(540~620 ℃)处理后次生α相(αs)析出形貌及其对力学性能的影响。结果表明:随着时效温度由540 ℃升高至620 ℃,合金中析出αs相片层厚度由0.030 μm增加到0.142 μm,屈服强度由1353 MPa降低至1074 MPa,断后伸长率由2.5%升高至11.4%,即时效析出的微米级片层αs能够显著调控合金的力学性能。此外,时效温度升高使合金的拉伸断裂由沿晶脆性断裂为主转变为韧窝穿晶为主的韧性断裂方式。Ti-5Al-4Zr-10Mo-3Cr合金时效析出的片层状αs相的厚度大于0.1 μm,合金的断后伸长率≥6%。当时效温度为600 ℃时,合金的硬度为387 HV10,抗拉强度为1182 MPa,伸长率为8.5%,具有良好的强塑性匹配。  相似文献   

13.
For enhancement of mechanical properties in Mg-9Li-3Al alloys, Mg-9Li-3Al duplex alloys were alloyed by addition of Sn and Y. Microstructure evolution and mechanical property response of as-cast Mg-9Li-3Al alloys by alloying with Sn and Y were investigated by optical microscopy, scanning electron microscopy, X-ray diffractometry and tensile tests. The results indicate that considerable blocky dendrites of primary α phase in Mg-9Li-3Al alloys become lath-like due to the addition of Sn. With addition of Y, Mg-9Li-3Al alloy consists of both block-like and lath-like α-Mg dendrites. The as-cast Mg-9Li-3Al-1Sn-1Y alloy shows a yield strength of 118 MPa, ultimate tensile strength of 148 MPa and the elongation to failure of 21%. Improvement in both strength and elongation of Mg-9Li-3Al alloys with Sn and Y addition is attributed to the combined action of MgLi2Sn and Al2Y intermetallic compounds.  相似文献   

14.
This study investigates the eff ect of solution treatment(at 470 °C for 0–48 h) on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%) alloy prepared by permanent gravity casting.The results show that the as-cast microstructure consists of α-Al dendrites and a network-like pattern of T-Mg_(32)(AlZnCu) 49 phases.Most of the T-phases were dissolved within 24 h at 470 ℃;and a further prolonging of solution time resulted in a rapid growth of α-Al grains.No transformation from the T-phase to the S-Al_2CuMg phase was discovered in this alloy.Both the tensile properties and impact toughness increased quickly,reached a maximum peak value,and decreased gradually as the solution treatment proceeded.The impact toughness is more closely related to the elongation,and the relationship between impact toughness and elongation appears to obey an equation:IT = 8.43 EL-3.46.After optimal solution treatment at 470 ℃ for 24 h,this alloy exhibits excellent mechanical properties with the ultimate tensile strength,yield strength,elongation and impact toughness being 431.6 MPa,270.1 MPa,19.4% and 154.7 kJ/m~2,which are comparable to that of a wrought Al–6.0 Mg–0.7 Mn alloy(5E06,a 5 xxx aluminum alloy).Due to its excellent comprehensive combination of mechanical properties,this cast alloy has high potential for use in components which require medium strength,high ductility and high toughness.  相似文献   

15.
1 INTRODUCTIONRecently ,muchattentionhasbeen paidtothedevelopmentofeffectivefabricationprocessesforpar ticulatereinforcedmetalmatrixcomposites (PRMM Cs) [13] .However,metalmatricesreinforcedwithparticlesformedinsituareanemerginggroupofdis continuouslyreinforcedcompositesthathavedistinctadvantagesovertheconventionalcomposites[4 ,5] .Inthein situfabricationprocess ,thespontaneousreac tionbetweenthereactantsisutilizedtosynthesizethereinforcementsinthemetalmatrix .Especially ,thedirectmelt…  相似文献   

16.
采用单辊熔体旋转法制备Al-10.7Zn-2.4Mg-0.9Cu合金带材,利用热挤压将带材坯料制成棒材,对其微观组织和力学性能进行研究。结果表明:所制备的带材由过饱和固溶体α(Al)等轴细晶构成,晶粒尺寸为3~5μm;合金经挤压后存在粗大第二相,析出相主要为MgZn2相,挤压态棒材抗拉强度为499.8 MPa,伸长率达到了15.3%,断口呈韧性断裂特征;经T6热处理后,合金中有细小的沉淀相析出,使得室温力学性能得到提高,抗拉强度达到631.9 MPa,伸长率有所降低,断口呈韧脆混合断裂特征。  相似文献   

17.
采用光学显微镜、扫描电镜、X射线能谱仪、X射线衍射仪、硬度测试及拉伸性能测试等手段分别研究了铸态Mg-4.8Al-2.7Ca-0.4Mn合金固溶处理前后的组织演变及力学性能。结果表明,铸态Mg-4.8Al-2.7Ca-0.4Mn合金的微观组织中,α-Mg相呈现典型的枝晶形态,枝晶间分布着大量在凝固过程中形成的Al2Ca相;固溶处理对第二相的形貌有显著影响,随着固溶时间的增加,枝晶偏析减弱,Al2Ca相从网状分布演变为多边形或细块状;经500 ℃固溶4 h,合金具有较好的综合拉伸性能,抗拉强度、屈服强度及伸长率分别达到222.0 MPa、182.5 MPa和4.5%。  相似文献   

18.
The semisolid slurry of A356 Al alloy was prepared by indirect ultrasonic vibration (IUV) method and then formed by direct squeeze casting (SC). The effects of squeeze pressure and T6 heat treatment on the microstructure and mechanical properties of rheo-squeeze casting (RSC) A356 Al alloy were investigated. The results indicate that with the increase of squeeze pressure, the average diameter of primary α-Al particles decreased, while the densities and mechanical properties of the samples increased. The effect of T6 heat treatment on the mechanical properties is more significant in RSC samples than in conventional SC samples. The tensile strength and elongation of T6 heat treated RSC samples under 100 MPa pressure are 338 MPa and 8%, respectively.  相似文献   

19.
This study investigates the mechanical properties of Al-7Si-0.3Mg (A356) alloy affected by the spinning deformation processing (SDP). The cast structure of the A356 alloy becomes elongated with increasing reduction in thickness. This leads to reduction of casting defects, and refines and distributes the eutectic silicon phase throughout the Al-matrix. The hardness tends to reach a steady value due to the uniformity of the microstructure with the reduction in thickness. The SDP leads to a re-arrangement in the eutectic region, which forces the propagation of cracks through the ductile ??-Al phase. The tensile strength and elongation increases accordingly. The improvement on tensile strength and elongation produces the best quality index for A356 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号