首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The cure kinetics and glass transition development of a commercially available epoxy/carbon fiber prepreg system, DMS 2224 (Hexel F584), was investigated by isothermal and dynamic‐heating experiments. The curing kinetics of the model prepreg system exhibited a limited degree of cure as a function of isothermal curing temperatures seemingly due to the rate‐determining diffusion of growing polymer chains. Incorporating the obtained maximum degree of cure to the kinetic model development, the developed kinetic equation accurately described both isothermal and dynamic‐heating behavior of the model prepreg system. The glass transition temperature was also described by a modified DiBeneditto equation as a function of degree of cure. Finally, the equivalent processing time (EPT) was used to investigate the development of glass transition temperature for various curing conditions envisioning the internal stress buildup during curing and cooling stages of epoxy‐based composite processing. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 144–154, 2002; DOI 10.1002/app.10282  相似文献   

2.
Solid acrylonitrile‐butadiene rubber (NBR) was used in epoxy resin for toughening and also for increasing the tack of epoxy/glass prepregs. The NBR used in this study was a rubber with 33% acrylonitrile content. The changes in thermal and mechanical properties such as glass transition temperature (Tg), curing characteristics and lap‐shear strength have been studied. For this purpose, three types of prepregs with two levels of NBR content of 3 and 5%, were prepared. Prepregs were made by solvent type impregnation apparatus. In this method, resin impregnates satin textile glass fiber under the controlled and constant condition of line speed and oven temperature. Prepregs were B‐staged for about 3%. The cure characterization, Tg and flow behavior were evaluated using differential scanning calorimetry and rheological analysis. Results showed that increasing the rubber content caused the following effects: (a) delay in gel time of prepregs, (b) increase in activation energy of prepregs, and (c) decrease in total heat of curing reaction. It is interesting that NBR increased the tack of epoxy/glass prepreg but, had no effect on its resin flow behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
To solve the penetration depth of carbon fiber/epoxy prepreg and irradiation dose uniformity by low‐energy E‐Beam under 125 keV, the both‐side irradiation curing of prepreg was investigated. The results show that there is little thermal effect during the low‐energy electron beam irradiation curing process, even though the irradiation dosage reached 300 kGy, only 46.2°C can be tested on the prepreg surface. Due to the low curing temperature, the degree of cure of prepreg was only 61.8% at 300 kGy level of irradiation, and the glass‐transition temperature (Tg) was only 48.6°C. The degree of cure and Tg can be increased sharply by thermal postcure. After being postcured at 160°C for 30 min, the degree of cure and the Tg of prepreg reached 98.5% and 170.4°C, respectively. Interlaminar shear strength testing result indicate that the fabrication process of the composite layer by layer curing by the low‐ energy E‐Beam is a promising cure approach. POLYM. COMPOS., 36:1731–1737, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
The effect of cure history on the dynamic thermomechanical properties of a high temperature curing epoxy resin has been studied using torsional braid analysis. In isothermal cures “full cure” is not possible except at temperatures above the maximum glass transition temperature (Tg) of the cured resin, hence the necessity of a “post-cure” after lower temperature isothermal cures. The highest Tg and maximum cross-linking in the cured resin was for a linear heating rate of 0.05°C/min from 30 to 200°C; higher heating rates lead to lower glass transition temperatures.  相似文献   

5.
This work identifies the necessary attributes of variable temperature cure epoxybased prepreg systems as they relate to high performance prepreg systems capable for composite repair. Model polyetherimide epoxy blend resins were developed and hot-melt impregnated into woven carbon fabric and compared with a commercial prepreg system. It was found that when the PEI content was increased from 0 to 14 wt% in the base resin of the prepregs, the GIC and GIIC fracture toughness increased by over 70%. The fracture toughness was found to be similar when the model prepreg was cured at either 121°C or 177°C, a result of only a 9% difference in conversion and complete phase separation of the PEI at both cure temperatures. Void content in vacuum cured laminates were found to decrease as the PEI content was increased because of a large quantity of resin in the interstitial areas between the longitudinal and transverse tows. A comparison of the model and commercial prepreg system demonstrated many similarities and some significant differences. For example, the commercial prepreg had a 15% difference in conversion when cured at 121°C versus 177°C and very little PEI phase separation after both cure cycles. As a result, a significant difference in GIIC for the commercial prepreg was observed for the two cure temperatures.  相似文献   

6.
The commercial epoxy prepreg SPX 8800, containing diglycidyl ether of bisphenol A, dicyanodiamide, diuron, and reinforcing glass fibers, was isothermally cured at different temperatures from 75 to 110°C and monitored via in situ near‐infrared Fourier transform spectroscopy. Two cure conditions were investigated: curing the epoxy prepreg directly (condition 1) and curing the epoxy prepreg between two glass plates (condition 2). Under both curing conditions, the epoxy group could not reach 100% conversion with curing at low temperatures (75–80°C) for 24 h. A comparison of the changes in the epoxy, primary amine, and hydroxyl groups during the curing showed that the samples cured under condition 2 had lower initial epoxy conversion rates than those cured under condition 1 and that more primary amine–epoxy addition occurred under condition 2. In addition, the activation energy under cure condition 2 (104–97 kJ/mol) was higher than that under condition 1 (93–86 kJ/mol), but a lower glass‐transition temperature of the cured samples was observed via differential scanning calorimetry. The moisture in the prepreg was assumed to account for the different reaction kinetics observed and to have led to different reaction mechanisms. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2295–2305, 2003  相似文献   

7.
The effects of conversion and temperature on the dynamic mechanical properties (at ≈ 1 Hz) of a dicyanate ester/polycyanurate thermosetting system are investigated after cure using torsional braid analysis (TBA). Extent of conversion is measured by Tg. The isothermal glassy-state modulus at measurement temperatures below the glass transition temperature of the monomer (Tg0) decreases with increasing conversion. The isothermal modulus at temperatures above Tg0 passes through a maximum due to competition between increase in the isothermal glassy-state modulus at the measurement temperature due to the vitrification process during cooling and the aforementioned decrease in the modulus with increasing conversion, which is considered to be due primarily to steric constraints in the developing network. The maximum in the isothermal modulus is associated with the boundary between the glass and glass transition regions. The experimental results are summarized in a conversion (Tg)–temperature–property diagram, the TgTP diagram, which is a framework for understanding relationships between transitions and material properties for thermosetting systems. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The room temperature density (ρRT) of a difunctional aromatic epoxy resin cured with a tetrafunctional aromatic amine passes through a maximum value in the vicinity of gelation with increasing conversion. For a given cooling rate cure resutls in a unique value of ρRT for each conversion as long as the material does not vitrify on cure. The occurrence of vitrification during cure eliminates the one-to-one relationship because of the nonequilibrium nature of the glass transition region and of the glassy state. In the glass transition region there is competition between physical aging which increases the density and chemical aging which, after gelation, decreases ρRT. After gelation, prolonged isothermal cure and physical aging to well beyond vitrification result in limiting values of ρRT which decrease with increasing temperature of cure. The maximum in the ρRT vs. conversion relationship is discussed in terms of the effects of shrinkage due to cure, the corresponding nonlinear increase in the glass transition temperature with increasing conversion after gelation, and longer relaxation times in the glass transition region with increasing crosslink density. Other factors which affect room temperature density are discussed.  相似文献   

9.
The effects of aging and moisture on the dynamic viscoelastic properties of three oriental lacquer films were investigated. With aging over 1000 days at room temperature, the glass‐transition temperature of the lacquer films (Tα) shifted to higher temperatures, the maximum loss tangent (tanδα) decreased, and the storage modulus at 20°C (E) increased. These changes were analogous irrespective of lacquers. With increasing moisture content, E decreased and tanδ increased at room temperature. Although the equilibrium moisture content of the virgin lacquer (sap) film was higher than that of the clear lacquer film, its E and tanδ were more stable with an increase of moisture content. It was speculated that the polysaccharides aggregated in the sap film did not effectively contribute to the mechanical properties of the film, while their hygroscopicity resulted in higher moisture content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2288–2294, 2002  相似文献   

10.
Structure‐thermal property interrelationships are characterized and reported for organic/inorganic addition cure polyimide composite matrices based on 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, the reactive terminal group 4‐phenylethynyl phthalic anhydride, and stoichiometric controlled diamine ratios of 1,3‐phenylenediamine, 1,4‐phenylenediamine, or 4,4′‐(1,3‐phenylenediisopropylidene) bisaniline, combined with bis(p‐aminophenoxy) dimethyl silane or an α, ω‐bis(3‐aminopropyl) polydimethylsiloxane oligomer. Polymerization of monomer reactants resin solutions, carbon fiber prepregs and composites, and imidized oligomers are characterized to relate molecular chemical structure and morphology to glass transition temperature, processing characteristics, thermodynamic properties, and thermal stability. Glass transition temperature, thermal decomposition temperature, and char yield were found to increase with increasing siloxane block length in the imide backbone. As the concentration of inorganic component in the imide oligomer backbone increased, the cured glass transition temperature decreased. Char yield and thermal decomposition temperature were observed to decrease as the inorganic component concentration increased. Incorporation of bis(p‐aminophenoxy) dimethyl silane into the imide oligomer structure did not provide any significant advantages over traditional polyimides relative to thermal properties or composite processing, but aminosiloxanes improved composite toughness, prepreg tack, and composite processability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The glass transition temperature Tg and density of a TGDDM-DDS epoxy resin system were studied as a function of cure times at various cure temperatures. Both Tg and density asymptotically increased toward a maximum value with increasing cure time. The Tg and density measurements were related to the extent of cure, and the relationship in both cases was found to be independent of cure temperature.  相似文献   

12.
The effects of room temperature aging on the cure kinetics of a bismaleimide (BMI) matrix prepreg have been characterized by different time and storage conditions. The study has focused on the stability of BMI matrix carbon fiber prepregs, when exposed to controlled environmental conditions before being used in composite manufacturing. The effects of aging on reactivity, glass transition temperature, and process window have been investigated by differential scanning calorimetrer through dynamic and isothermal tests. A theoretical kinetic model for epoxy matrix prepregs, developed in previous studies, has been applied to the cure of both aged and virgin BMI matrix. The model is able to satisfactorily describe the effect of processing variables such as temperature and degree of cure during the curing of the composite under different conditions (curing temperature and heating rate). The effects of diffusion‐controlled phenomena on the cure kinetics, associated with changes in glass transition temperature as a function of the degree of cure, have been taken into account in the formulation of an nth‐order kinetic model. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
As part of an engineering analysis and experimental methodology to characterize prepreg tack, a compression-to-tension test was optimized to enhance reproducibility and generate intrinsic property data. With the resulting stress-strain compression and tension data, a theoretical model was developed to describe tack as a bulk viscoelastic property of a prepreg laminate stack. Using the viscoelastic analysis, four intrinsic material parameters to characterize prepreg tack could be defined. These were 1) relaxed modulus, 2) unrelaxed modulus, 3) relaxation time, and 4) initial void content of the prepreg stack. Relaxed and unrelaxed moduli of the prepreg stack were independent of temperature, while the relaxation time was highly dependent on temperature and matrix viscosity. In addition, the relaxation time was found to be influenced by resin/fiber content and prepreg surface characteristics, which also influenced the void content of the prepreg stack. Using these measured parameters, good agreement was observed between theory and experimental data for both the stress-strain curve of the tack test and the simplified compression tack index (CTI*), defined as the ratio of output energy of the prepreg stack during tensile unloading to input energy during compressive loading.  相似文献   

14.
The cure behavior and thermal degradation of high Tg epoxy systems have been investigated by comparing their isothermal time-temperature-transformation (TTT) diagrams. The formulations were prepared from di- and trifunctional epoxy resins, and their mixtures, with stoichiometric amounts of a tetrafunctional aromatic diamine. The maximum glass transition temperatures (Tg) were 229°C and > 324°C for the fully cured di- and trifunctional epoxy materials, respectively. Increasing functionality of the reactants decreases the times to gelation and to vitrification, and increases the difference between Tg after prolonged isothermal cure and the temperature of cure. At high temperatures, there is competition between cure and thermal degradation. The latter was characterized by two main processes which involved devitrification (decrease of modulus and Tg) and revitrification (char formation). The experimentally inaccessible Tg (352°C) for the trifunctional epoxy material was obtained by extrapolation from the values of Tg of the less highly crosslinked systems using a relationship between the glass transition temperature, crosslink density, and chemical structure.  相似文献   

15.
The curing reaction of bisphenol‐A epoxy resin (BPAER) with boron‐containing phenol–formaldehyde resin (BPFR) was studied by isothermal and dynamic differential scanning calorimetry (DSC). The kinetic reaction mechanism in the isothermal reaction of BPAER‐BPFR was shown to follow autocatalytic kinetics. The activation energy in the dynamic cure reaction was derived. The influence of the composition of BPAER and BPFR on the reaction was evaluated. In addition, the glass transition temperatures (Tgs) were measured for the BPAER‐BPFR samples cured partially at isothermal temperatures. With the curing conditions varying, different glass transition behaviors were observed. By monitoring the variation in these Tgs, the curing process and the thermal property of BPAER–BPFR are clearly illustrated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1054–1061, 2000  相似文献   

16.
Times to gelation and vitrification have been determined at different isothermal curing temperatures between 200 and 240°C for an epoxy/amine system containing both tetraglycidyl-4,4′-diaminodiphenylmethane (TGDDM) and a multifunctional Novolac glycidyl ether with 4,4′-diaminodiphenylsulphone (DDS). The mixture was rich in epoxy, with an amine/epoxide ratio of 0·64. Gelation occurred around 44% conversion. Vitrification was determined from data curves of glass transition temperature, Tg, versus curing time obtained from differential scanning calorimetry experiments. The minimum and maximum values Tg determined for this epoxy system were Tg0=12°C and Tgmax=242°C. Values of activation energy for the cure reaction were obtained from Tg versus time shift factors, aT, and gel time measurements. These values were, respectively, 76·2kJmol-1 and 61·0kJmol-1. The isothermal time–temperature–transformation (TTT) diagram for this system has been established. Vitrification and gelation curves cross at a cure temperature of 102°C, which corresponds to glass transition temperature of the gel. © of SCI.  相似文献   

17.
In this work, the fundamental kinetic and structure/property information for a novel phosphorus‐based hardener, bis(4‐aminophenoxy) phosphonate is cured with a range of common epoxy resins such as diglycidyl ether of bisphenol A, tri glycidyl p‐amino phenol and tetra glycidyl diamino diphenyl methane (TGDDM) at various cure temperatures. The rate coefficients k1 and k2 for the primary and secondary amine epoxide addition reactions, respectively, were determined and were found to exhibit a positive substitution effect for the TGAP and TGDDM epoxy resins. Etherification or internal cyclization were shown to be important at higher levels of cure conversion, with these reactions being more significant for the TGAP/BAPP system. Some basic structure/property relationships were established between the glass transition temperature (Tg) and epoxide conversion. The master curve obtained for the superimposition of the various cure temperatures for each epoxy demonstrated the independence of the cure mechanism with temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3288–3299, 2006  相似文献   

18.
The cure schedule for carbon fiber‐reinforced, phenylethynyl‐terminated Ultem™ (GE Plastics) composites was studied in an attempt to optimize the resultant glass transition temperature, Tg. Reaction progress and possible matrix degradation were monitored via the Tg. On the basis of previous research, matrix degradation induced Tg reduction was expected for increases in cure time or temperature beyond approximately 70 minutes at 350°C. Using the central composite design (CCD) of experiment technique, composite panels, neat resin, and polymer powder‐coated tow (towpreg) were cured following various cure schedules to allow for the measurement of the glass transition temperatures resulting fronm cure time and temperature variations. The towpreg and neat resin specimens were cured in a differential scanning calorimeter. The glass transition temperatures of all specimens were measured via differential scanning calorimetry; the composite glass transition temperatures were also measured with dynamic mechanical thermal analysis. The composite panels and towpreg specimens showed similar trends in Tg response to cure schedule variations. Composite and towpreg glass transition temperatures increased to a plateau with increasing cure time and temperature, whereas, the neat resin showed an optimal Tg followed by Tg reduction with increasing cure time and temperature. The optimal neat resin Tg occurred within a cure time and temperature significantly below that required to maximize the composite and towpreg glass transition temperatures.  相似文献   

19.
Here, we propose a new method for estimating the extent of curing of thermosetting prepregs. In the proposed method, the extent of curing is estimated with the curing index (Ci), defined as the ratio of the glass‐transition temperature (Tg) to the ultimate glass‐transition temperature of the material. The advantages of this new method over the conventional degree of conversion (α) for estimating the extent of curing of thermosetting prepregs are discussed in detail. Ci and α of a toughened epoxy prepreg (977‐2 unidirectional) were obtained for a wide range of isothermal curing temperatures with a differential scanning calorimeter. The ultimate heat of reaction varied inconsistently with decreasing curing temperature; this resulted in erratic behavior of α. However, Ci provided a more consistent estimate of the extent of curing because Tg, unlike α, did not need to be modified on the basis of the curing history of the material and was measured directly with the heat‐flow data from differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
In a blend of acrylic block copolymer consisting of poly(methyl methacrylate) and poly(n-butyl acrylate) blocks and a special rosin ester resin (RE) tackifier as a model pressure-sensitive adhesive (PSA), RE exists in two states: as nm-sized agglomerated particles (A) and as dissolved molecules (B). The effect of A and B ratio on the PSA properties were investigated using REs with four different weight-average molecular weights (Mws) in the range from 680 to 1700. The formation of A increased with increasing of Mw because of lowering of miscibility. The glass transition temperature increased with increasing of Mw. The tack at lower temperatures and the fracture energy were improved by B, whereas the tack at higher temperatures was improved by A. A and B enhanced the cohesive strength and the wettability of PSA, respectively. However, the improvement of cohesive strength by the RE with highest Mw was remarkably low. This seems to be caused by the larger size of agglomerated particles. 1H pulse nuclear magnetic resonance analysis was useful for estimating the degree of A formation. The model PSA investigated in this study was nanocomposite-like.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号