首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined the micro indentation hardness of a series of carbon fiber reinforced epoxy and thermoplastic polyimide (TPI) composites. In the epoxy systems, the influence of Nylon particles was studied. The effect of crystallization of the thermoplastic polyimide upon the microhardness values of the resin was also investigated. The microstructure of the TPI-composites was characterized by X-ray diffraction. The results show that the addition of carbon fibers to the neat resins greatly increases the microhardness and thus the yield stress of the composite. The value of the microhardness technique is highlighted in emphasizing the heterogeneity of the CFRC.  相似文献   

2.
Despite demonstrated success in low volume aerospace and defense applications, structural composites remain at the periphery of high volume industries such as construction, automotive, and consumer goods because of long cycle times. Stamping provides a means of making composite sheet products at rates ten to a hundred times faster than any existing continuous fiber processes. However, to make composites stamping a viable process, one must understand how the combination of fabric architecture, tool design, and process conditions interact to produce a part free of wrinkling and tearing. In this paper, the effect of temperature, stamping rate, and boundary constraints on the material deformation is presented. The focus of this study is a co‐mingled glass/polypropylene fabric, in the form of a layer of unidirectional yarns held together by stitches. The results show that temperature variations have the greatest effect on deformation. In addition, a finite element model of parallel strips with linear constraints was shown to successfully simulate the sliding deformation or draw‐in of the stitched unidirectional material.  相似文献   

3.
With the increased use of carbon fiber reinforced composites (CFRC), the demand for the integration of insulated conductive wire/yarns in CFRC is increasing for additional function integrations such as sensoric, actoric, signal transfer, heating, etc. Between thermoset and thermoplastic matrix composites, the integration of insulated conductive materials is comparatively difficult due to the requirements of higher temperature and pressure during the consolidation of thermoplastic composites. Therefore, the need for insulating material able to withstand higher temperature for the use in thermoplastic CFRC is also high. Using DREF friction spinning technique, it is possible to manufacture yarns with a core‐sheath structure in which, as the core conductive wire/yarns and as the sheath different fiber formed materials can be used for the insulation of the core. In this study, the aspects of using different short/staple fibers such as polyester, Glass and Kynol as the sheath and the usable temperature range are revealed. Furthermore, the insulation property of such fibers after the application of different temperatures has been reported. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1179‐1184, 2013  相似文献   

4.
Interest in carbon fiber reinforced composites based on polyaryl ether ketones (PAEKs) continues to grow, and is driven by their increasing use as metal replacement materials in high temperature, high‐performance applications. Though these materials have seen widespread use in oil, gas, aerospace, medical and transportation industries, applications are currently limited by the thermal and mechanical properties of available PAEK polymer chemistries and their carbon fiber composites as well as interfacial bonding with carbon fiber surfaces. This article reviews the state of the art of PAEK polymer chemistries, mechanical properties of their carbon fiber reinforced composites, and interfacial engineering techniques used to improve the fiber‐matrix interfacial bond strength. We also propose a roadmap to develop the next generation of high‐performance long fiber thermoplastic composites based on PAEKs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44441.  相似文献   

5.
An experimental investigation of the processing of glass-fiber reinforced polypropylene is presented. Final fiber length distribution, chopped strand disgregation, matrix and composite rheological properties, die swelling, and surface morphology are analyzed. Strand disgregation is observed to increase with shear rate and fiber concentration and to decrease with the length of the die. Final fiber length distribution appears to be independent of die length but decreases with fiber concentration and shear rate. The viscosity and first normal coefficient functions show a linear dependence with shear rate and increases with fiber concentration. The extruded filament surface shows a minor roughness when the shear rate increases. The results of this experimental characterization give useful information for determining the influence of processing variables on the final properties of short fiber reinforced polypropylene and constitutes the first part of a more ambitious project that also includes the development of a modeling strategy of the processing behavior of short fiber composites.  相似文献   

6.
The effect of rare earth solution (RES) surface treatment of carbon fibers (CFs) on the tensile strength and tribological properties of CF‐reinforced polyimide (CF/PI) composite was investigated. Experimental results revealed that the tensile strength of RES‐treated CFs reinforced PI composite was improved by about 19% compared with that of untreated composite, while 7% improvement was achieved by air oxidation. Compared with the untreated and air‐oxidated CF/PI composite, the RES‐treated composite had the lowest friction coefficient and specific wear rate under given applied load and reciprocating sliding frequency. RES treatment effectively improved the interfacial adhesion between CFs and PI. The strong interfacial adhesion of the composite made CFs not easy to detach from the PI matrix and prevented the rubbing‐off of PI, and accordingly improved the friction and wear properties of the composite. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
Nylon‐6,6 was grafted at the surface of glass and plasma‐treated Kevlar fibers for use in nylon–Kevlar thermoplastic composites. Hydroxyl and, in the case of Kevlar, amine end‐groups occur at the fibre surface, either as defects or due to the plasma treatment. These were used as anchor points for nylon‐6,6 step polycondensation. Fibers were subjected to successive dipping in adipoyl chloride/CH2Cl2 and aqueous hexamethylenediamine solutions in order to attach and grow high molecular weight polymer on the fiber surface. Grafted nylon was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, differential scanning calorimetry and thermogravimetry. It was shown that no backbiting occurred during the first stage of the grafting process and that the polymer quantity increased linearly with number of passes, up to ∼50 passes for plasma‐treated Kevlar and 100 for glass fibers, after which polymer quantity remained constant, within experimental error, which was attributed to the onset of termination reactions. POLYM. COMPOS., 28:278–286, 2007. © 2007 Society of Plastics Engineers  相似文献   

8.
A literature survey is presented on sheet-forming methods and mechanisms for continuous fiber reinforced thermoplastics. The diaphragm forming process is shown to be one of the more promising fabrication routes for complex-curvature structures. The primary deformation mechanisms involved in the sheet-forming processes are identified and discussed. Earlier approaches to develop mathematical models either have been kinematically based or have treated only one of the primary deformation mechanisms. A promising constitutive model for the highly anisotropic behavior of the composite at forming temperature is examined. The composite sheet is assumed to behave as a transversely isotropic Newtonian fluid that is both incompressible and inextensible in the fiber direction. The second section of the paper treats the experimental development of the polymeric diaphragm forming process for thermoplastic composites. The viscoelastic properties of the diaphragm material are characterized by dynamic mechanical analysis. The rate sensitivity of the phenomenon of shear-buckling during forming of certain cross-ply and quasi-isotropic composite laminates is investigated, using a shallow female mold. Finally, the interface condition between the diaphragm and the composite during forming is examined.  相似文献   

9.
We present a simple density theory based on first principles that predicts the shielding effectiveness of composite matrix materials at filler loadings near or above the percolation threshold. Such a model has practical applications in electromagnetic interference and radio frequency interference, and is validated here for Fortafil 243 carbon fiber within nylon 6,6. In brief, the theory predicts that the most important parameter on the shielding effectiveness of a sample is the carbon fiber volume percent. At very high filler loadings, experimental results show a weak dependence on the frequency of the wave to be shielded, which may be attributed to enhanced reflection from multiple, coherent scatterers (carbon fiber network). These effects are not considered in our model. Nevertheless, advantages of this model are ease of use and improved predictive capabilities when compared to models previously reported in the literature. Our model performs very well over an electrical resistivity range from 1015 ohm‐cm (at low filler loading levels below the percolation threshold) down to 10−1 ohm‐cm (at high filler loading levels well above the percolation threshold), and can be used to determine filler loadings needed to provide a certain level of shielding of electromagnetic waves. POLYM. COMPOS. 26:671–678, 2005. © 2005 Society of Plastics Engineers  相似文献   

10.
凯芙拉纤维/尼龙6热塑性复合材料的研制   总被引:1,自引:0,他引:1  
研究了凯芙拉纤维与尼龙 6单体通过阴离子原位聚合制备热塑性复合材料的方法。以氢氧化钠为引发剂 ,甲苯二异氰酸酯 (TDI)为活化剂 ,确定体系的聚合温度为 160℃ ,引发剂、活化剂用量为6.42 m ol/L ,聚合时间 60 min,在此条件下聚合速度较快 ,单体转化率 1h后达 95 %以上。研究发现 ,凯芙拉纤维经酰化处理后 ,基本上不会对己内酰胺阴离子聚合体系产生阻聚作用  相似文献   

11.
长纤维增强热塑性复合材料的开发与应用   总被引:2,自引:0,他引:2  
长纤维增强热塑性复合材料以其优异的性能成为高分子复合材料研发与应用的热点。笔者综述了长纤维增强热塑性复合材料的性能特征、研发历史与现状、产品形式与制造技术、应用状况,展望了长纤维增强热塑性复合材料的发展前景。  相似文献   

12.
13.
This paper deals with the mechanical performances of a new class of injection molded long fiber composites based on PP and PBT matrices. Effects of material parameters such as fiber concentration, breakage, orientation, and matrix composition are analyzed. The critical fiber length, l, of the PP long fiber composite, evaluated from the pull-out length of the tensile fracture surface, was found to be much higher than those previously reported. Tensile strength calculated from the measured ll and fiber length distribution in the molded samples was found to be in agreement with the measured values. From this work it is concluded that higher mechanical performances of the long fiber reinforced thermoplastics will be attained by the injection molding process to further reduce fiber breakage.  相似文献   

14.
This article investigated the effect of moisture on the tensile strength and in‐plane shear of laminated composites. For this, the results of a composite system based on a new thermoplastic Elium® 150 resin were compared to a traditional epoxy resin result. Both composites were fabricated via VARTM using a 0/90° plain weave carbon fiber fabric. For the non‐conditioned specimens, the thermoplastic composites presented 30% more tensile resistance in comparison to epoxy composites. For conditioned specimens, this difference was 14%. These results were related to plasticization, which tends to favor the polymer softening providing a greater matrix plastic deformation, promoting a ductile fracture of the composite. On the other hand, the in‐plane shear properties were 30% higher for the thermosetting laminates for both conditions. In this case, moisture may have favored the formation of surface cracks and weakened the fiber/matrix interfacial adhesion. Additional analysis based on design of experiments has shown that the Elium® 150 resin significantly affects all responses and presented in fact a better behavior in comparison to Epoxy resin. While the conditioning effects have featured a statistically noticeable contribution to the tensile strength, the presence of the moisture did not provide a significant enhancement to the in‐plane shear strength. Besides that, the unknown fractographic aspects of the fracture surfaces of both composites were used as a complementary tool for the mechanical characterization. POLYM. ENG. SCI., 59:2185–2194, 2019. © 2019 Society of Plastics Engineers  相似文献   

15.
Sihai Wen 《Carbon》2007,45(3):505-513
Cement reinforced with discontinuous carbon fiber is known for its piezoresistivity-based strain sensing ability, its electrical conductivity and the consequent multifunctionality. The high cost of carbon fiber is disadvantageous. Both carbon fiber and carbon black (used with silica fume in the amount of 15% by mass of cement) increase the DC conductivity and the EMI shielding effectiveness of cement, but carbon fiber is more effective than carbon black. Partial (50%) replacement of carbon fiber by carbon black lowers the cost, in addition to increasing the workability, while the electrical conductivity and the electromagnetic interference shielding effectiveness are maintained. However, the partial replacement reduces the strain sensing effectiveness. Total replacement of carbon fiber by carbon black diminishes both the conductivity and the shielding effectiveness, further reduces the strain sensing effectiveness, decreases the compressive modulus and increases the compressive strain at failure, while the compressive strength is maintained. The increased workability due to the partial replacement enables a higher total conductive admixture content to be attained. The maximum total conductive admixture content is 3.5% by mass of cement. In contrast to fiber replacement, the addition of carbon fiber to cement with carbon black decreases the compressive strength, strain at failure and density.  相似文献   

16.
The heating behavior of nanoscopic and microscopic Nickel particle-embedded thermoplastic polyurethane (TPU) adhesive under induction heating is studied. Different particle sizes and content of Nickel were applied to TPU with varying film thicknesses and output power of the induction heater. From the results, heat generation of the TPU films increased with increases in Nickel content, TPU film thickness, and output power. The heat generation of the Nickel particle-embedded TPU films was in the order of 70 nm > 1 µm > 70 µm > 20 µm in terms of particle size, and this result can be explained by increases in the ratio of eddy current heating to hysteresis heating with increases in particle size.  相似文献   

17.
18.
通过熔融共混法制备了热塑性木薯淀粉(TPS)/剑麻纤维(SF)复合材料,研究了TPS/SF复合材料在回生过程中的热行为、拉伸性能、透光率、球晶大小等。结果表明:随着回生时间的增加,TPS/SF复合材料的熔融焓、拉伸强度和透光率增加,外延起始分解温度、质量损失50%时的温度、外延终止分解温度、最大分解速率对应的温度升高;TPS/SF复合材料的球晶随着回生时间增加变得更细密。  相似文献   

19.
《Polymer Composites》2017,38(7):1319-1326
The effects of epoxy‐functionalized glass fiber (GF) on the electrical conductivity, crystallization behavior, thermal stability, and dynamic mechanical properties of polyoxymethylene (POM)/thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivities of POM/5%−20% TPU/1% MWCNT composites are significantly reduced by nine orders of magnitude after the addition of 20% GF because of the formation of TPU‐coated GF structure facilitating the construction of conductive networks. GF has no obvious influence on the crystallization temperature, melting temperature, and degree of crystallinity of POM in POM/TPU/MWCNT composites because of their relatively bigger size compared with POM chains and MWCNTs. The storage moduli of POM/TPU/MWCNT composites are improved by the addition of GF, indicating that POM/TPU/MWCNT/GF composites are promising materials with good electrical and mechanical properties. POLYM. COMPOS., 38:1319–1326, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
以碳纳米管(CNTs)和热塑性聚氨酯(TPU)为原料,通过硫酸(H2SO4)/硝酸(HNO3)混合溶液处理碳纳米管颗粒表面以达到改性的效果,使用改性过后的碳纳米管熔融共混制备出TPU/CNTs复合材料。研究了不同含量的CNTs对TPU基体的流变、力学、耐磨性以及热性能的影响。结果表明, 改性过后的CNTs在TPU基体中形成了良好的分散性和相容性;TPU/CNTs复合材料在高频剪切下保留了复合材料的加工流动性,并且复合材料的拉伸强度以及耐磨性相较于TPU有明显的增强,其中在改性碳纳米管含量较低时,复合材料的力学性能改善较为明显;改性CNTs的加入提高了TPU基体的熔融温度和结晶度;改性CNTs的加入提高了复合材料的热降解温度,提高了TPU基体的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号