首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过对纳米Al/Al2O3复合材料微观结构的研究,揭示了这种材料热稳定性的特点,在550℃以下,完整的Al2O3的外壳限制了Al的传输,从而保持了原来的晶粒形态和尺寸。在570~650℃的温度范围内,弥散分布的Al2O3碎片通过钉扎晶界抑制了Al晶粒的长大,即使在660℃,Al晶粒熔化后,弥散的Al2O3碎片仍可在冷凝过程中有效地抑制Al晶粒的长大。  相似文献   

2.
化学沉淀法合成纳米Bi2O3粉末   总被引:5,自引:0,他引:5  
李卫  黄伯云  周科朝  杨华 《功能材料》2005,36(2):279-281
以Bi(NO3)3 为原料,利用化学沉淀法合成Bi2O3 粉体,发现最佳的工艺条件为:反应温度为90℃,反应时间为 2h, Bi(NO3 )3 溶液的质量浓度为300g/L。XRD分析结果表明产物为α Bi2O3。TEM和激光粒度分析表明,Bi2O3 粉体粒径约为 60nm,颗粒呈球形, 且分布均匀。将 Bi2O3 粉体置于空气中 6个月后测试未见团聚现象。反应机理是液 液反应的进行,实现了纳米Bi2O3 的生成。  相似文献   

3.
4.
雷霆  李淑英 《材料保护》2006,39(4):16-20
将α型纳米Al2O3加入到磷化液中,选择合适的分散剂,在一定的温度范围内进行磷化,通过共沉积使纳米材料包裹在磷化膜层中,以达到改善磷化膜质量、提高膜层性能的目的.研究了磷化温度、时间、分散剂和纳米用量及酸度调节剂Na2CO3 对反应的影响,通过正交试验得出最优磷化工艺参数为:18.0 g/L ZnO,1.0 g/L Ni(NO3)2,16 mL/L HNO3, 3.0 g/L Ca(NO3)2,28.5 mL/L H3PO4,5.0 g/L Mn(H2PO4)2,2.0~5.0 g/L 柠檬酸,1.0~5.0 g/L 酒石酸,3.0~5.0 g/L 复合促进剂,11.0 g/L Na2CO3,4.0 g/L α型纳米Al2O3 ,分散剂A 2.5 g/L,磷化温度80 ℃,磷化时间12 min.经X射线、扫描电镜、电子探针等测试分析发现,加入的α型纳米Al2O3在磷化膜层中基本均匀分布.用细纱纸摩擦法测试磷化膜的耐磨性,发现加入α型纳米Al2O3的磷化膜耐磨性明显增强.  相似文献   

5.
纳米Al/Al2O3复合材料中Al2O3膜的碎化对性能的影响   总被引:1,自引:0,他引:1  
观察了在不同温度下退火的Al/Al2O3复合材料的微观组织,结果表明,当退火温度达570℃时包裹着Al核的非晶Al2O3壳开始破碎。研究了非晶Al2O3膜的破碎机理并在此基础上讨论了材料微观结构与力学性能和内耗的关系,发现氧化膜的状态对材料的力学性能和内耗特征具有决定性的影响。  相似文献   

6.
通过机械搅拌的方法将纳米Al2O3颗粒分散在环氧树脂基体中,用干燥箱对其固化来制备纳米Al2O3,环氧树脂复合材料,然后进行低温冷冻处理,从而对其进行力学性能测验。研究表明环氧树脂在120℃下烘烤12h所取得的固化效果较好;而低温处理后的环氧树脂复合材料具有优于未处理的环氧树脂复合材料的力学性能,尤其是在耐压和韧性方面。  相似文献   

7.
通过原位复合的方法合成了尼龙6/纳米TiO2和尼龙6/纳米Al2O3复合材料,并对材料的力学性能、动态力学行为和光氧化降解行为进行了初步的探讨。结果表明,经钛酸酯偶联剂表面处理的纳米TiO2和纳米Al2O3的加入,可以在一定程度上同时提高尼龙6基体的强度和韧性。此外,氙灯老化实验和XPS测试结果表明,尼龙6/纳米TiO2复合材料具有良好的耐光氧老化降解能力。  相似文献   

8.
以普通无机盐为原料采用沉淀法制备了纳米Al2O3和SiO2.XRD分析表明样品为无定形结构,SEM分析表明得到的纳米Al2O3和SiO2均为球形颗粒,直径分别为90m和300nm.将合成的纳米材料添加至陶瓷面釉进行烧结测试,结果表明,添加纳米材料釉料的烧结温度比普通釉料的烧结温度降低了30℃,釉层性能明显得到改善,釉料良好的性能源于纳米材料较大的表面积及高的烧结活性.  相似文献   

9.
灰铸铁激光熔覆纳米Al2O3的性能研究   总被引:4,自引:0,他引:4  
刘燕  任露泉  于思荣  韩志武 《功能材料》2005,36(8):1265-1267
用纳米氧化铝和铁粉混合作为灰铸铁的表面改性材料,通过激光熔覆试验对灰铸铁进行表面改性,制备了灰铸铁表面改性试样。对试样进行了以磨损试验为主的性能测试,显微硬度测量结果表明表面改性层硬度明显提高,结合区由于成分及微观组织的改变,硬度提高异常显著。运用MM-200摩擦磨损试验机进行了的摩擦磨损试验,结果表明表面改性层耐磨性显著提高,且纳米氧化铝含量越多,耐磨性提高越显著。载荷越大,摩擦系数越小。灰铸铁激光熔覆纳米Al2O3后,其磨损机制为犁削磨损。  相似文献   

10.
Al/Al2O3陶瓷基复合材料的研究进展   总被引:4,自引:0,他引:4  
周正  张力  丁培道 《材料导报》2000,14(6):64-66
在综述Al/Al2O3复合材料制备工艺的基础上,提出了将石英玻璃浸入铝镕体中,通过Al向SiO2玻璃中的反应浸渗.制备Al/Al2O3复合材料的新方法.获得了Al与Al2O3相互连通的Al/Al2O3复合材料.由于玻璃具有容易被加工成各种形状零件的特点,通过Al液向致密玻璃坯体的反应浸渗,可以获得近成形的Al/Al2O3复合材料.实验结果发现,由于Al/Al2O3中不存在孔隙,Al/Al2O3的弯曲强度和断裂韧性分别可达430MPa和13MPa·m1/2,其性能优于用Lanxide工艺制备的Al/Al2O3.  相似文献   

11.
化学气相沉积法制备SiC纳米粉   总被引:11,自引:0,他引:11  
本工作采用二甲基二氮硅烷和氢气为原料,在1100-1400℃温度条件下,通过化学气相沉积制备出了高纯、低氧含量的纳米SiC粉体,实验结果指出,在1100-1300℃,制备得到的粉体颗粒由于锭型相和β-SiC微晶组成;而在1400℃则粉体颗粒主要由β-SiC微晶无序取向组成,随反应条件的改变,粉体平均粒径和β-SiC微晶的平均尺寸分别在40-70nm和1.8-7.3nm范围内变化,同时,产物粉体的C  相似文献   

12.
Synthesis of Nanosized Copper Powder by an Aqueous Route   总被引:4,自引:0,他引:4  
Nanostructured, crystalline copper powder was produced at ambient temperature by aqueous reduction of a copper salt by sodium borohydride. Conditions were optimized to produce boron-free copper powder with an average particle diameter of 200 nm, surface area of 5.48 m * m/g, and oxygent content of 0.155%. The effects of different experimental conditions on average particle size of the powder were also studied. The sintering phenomenon exhibited by produced copper particles at 100°C may be attributed to the low oxygen content of the powder along with other size variation-dependent factors.  相似文献   

13.
氨解法制备纳米氮化铬粉体   总被引:3,自引:0,他引:3  
以沉淀法制备的纳米Cr2O3为原料,采用氨解法在800-900℃、氮化4-8h制备了纳米氮化铬粉体.对不同氨解温度、氨解时间合成的CrN粉体用X射线衍射(XRD)、透射电镜(TEM)等方法进行了表征.研究了氨解温度、氨解时间对CrN粉体性能的影响.结果表明:该方法所需设备简单,氮化温度低,反应时间短,产品纯度高.在800℃氮化8h可得到粒度为40-80nm的纯立方相CrN纳米粉体.  相似文献   

14.
结合薄膜涂布技术,在超声波的作用下,利用溶胶-熔盐复合工艺制备超细片状氧化铝。以硫酸铝钾和氯化钾混合溶液中的KAl (SO4)2·12H2O为铝源,KCl为熔盐,加入Na2CO3溶液,经超声处理,制成铝溶胶,并将溶胶涂布在水溶性树脂基底上。洗脱后的片状氢氧化铝经高温煅烧,成为厚度均一、表面光滑的超细片状氧化铝。研究熔盐比例,添加剂种类和含量,超声波处理时间对粉体形貌的影响。扫描电镜及X射线衍射分析结果表明:铝源与熔盐比例为1∶4,添加剂为TiO2及含量为2%,超声处理时间为30 min,1200℃高温煅烧条件下得到形貌规则,表面光滑,粒径在10μm以下,径厚比10左右的超细六角片状ɑ-氧化铝。  相似文献   

15.
孙韵  叶颖  金江 《材料导报》2007,21(F05):150-152
用沉淀法中的氯化铝一硫酸铝铵反应体系制备纳米氧化铝原料便宜,工艺简单,制得的粉体纯度高,粒径小。用正交实验优化了其主要反应条件,以表面活性剂为分散剂,制备出了成本低、质量较好的纳米氧化铝。经粗略计算,成本约为30元/kg。  相似文献   

16.
沉淀法制备低成本纳米氧化铝粉体   总被引:2,自引:0,他引:2  
用沉淀法中的氯化铝-硫酸铝铵反应体系制备纳米氧化铝原料便宜,工艺简单,制得的粉体纯度高,粒径小.用正交实验优化了其主要反应条件,以表面活性剂为分散剂,制备出了成本低、质量较好的纳米氧化铝.经粗略计算,成本约为30元/kg.  相似文献   

17.
Nanometer-sized ZnO powders for photocatalytic applications were prepared by a solution combustion method with various starting materials and fuels. It was easy to obtain single-phase ZnO powders using the solution combustion method regardless of the starting materials and fuels. However, the particle size and shape of the synthesized ZnO powders were different than the used fuel. Using glycine as a fuel, the particle shape of ZnO powders was spherical with uniform nanosize. On the other hand, using carbohydrazide as a fuel, the particle shape was platelike. The ZnO powder synthesized using Zn(OH)2 and glycine as starting material and fuel, respectively, showed good powder characteristics, such as average grain size of 75 nm and the specific surface area of 94 m2/g. The average particle size and specific surface area were greatly dependent on the types of oxidants and fuels. Removal of silver ions from a used photo-film developing solution was attempted to examine the photocatalytic activity of the prepared ZnO powders. It also showed excellent photocatalytic properties in that the silver ions were completely removed from the solution within 3 min.  相似文献   

18.
化学合成法制备ZnS基纳米荧光粉研究   总被引:9,自引:0,他引:9  
描述了一种生产ZnS:M[M=Mn,Cu,Cu(Al)]纳米荧光粉的化学合成方法.运用本方法通过调节巯基乙酸与甲基丙烯酸的摩尔比,可在1.8~3.0nm范围内控制纳米粒子的尺寸.选择面积的电子衍射和X射线衍射证明ZnS:M纳米荧光粉具有闪锌矿结构.透射电镜图像表明ZnS:M纳米荧光粉具有较好的尺寸分布.ZnS:Mn的PL谱表明纳米尺寸的ZnS:Mn与体材料相比具有较高的发光效率。  相似文献   

19.
本研究采用碳热还原氮化法(CRN)合成AlN粉体。以γ-Al2O3和炭黑为原料, 采用直接发泡工艺与注凝成型相结合的方法制备出Al2O3/C泡沫, 作为合成AlN粉体的前驱体。泡沫孔隙尺寸从几十微米到几百微米, 总孔隙率56%~90%。具有通孔结构的泡沫前驱体实现了原料内部各处的均匀的固-气反应, 泡沫总孔隙率≥80%可显著提高CRN反应的速率。XRD分析结果显示: CRN过程中存在γ-Al2O3到α-Al2O3的相转变, 反应起始温度在1300℃以上, 并在1550℃反应完全。在1650℃合成得到的AlN颗粒平均粒径不超过1 µm, 氮含量为32.9wt%。  相似文献   

20.
梁邦兵  黄志良  刘羽 《材料导报》2004,18(Z1):121-123
详细介绍了国内外水热合成法和硫酸铝铵分解法制备氧化铝粉体的技术,论述了它们的优缺点,并对其他的合成途径进行了简单对比.最后展望了其制备方法的发展趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号